STRING WAVE GAUGE WITH A SHIELDED WIRE FOR WAVE MEASUREMENTS
Abstract and keywords
Abstract (English):
Purpose. The purpose of the study is to describe a prototype of a string wave gauge for dynamic record of wave elevations in salt and fresh water in a wide range of wavelengths up to capillary ones, which should be both insensitive to salt deposition on the conducting wire and free from short circuits caused by conductive debris. The prototype is required when developing unattended wave gauge “grids” in-tended for recording two-dimensional wave spectra and for accompanying of sea wave studies with remote methods for interpretation and validation of remote sensing data. Methods and Results. A capacitive string wave gauge with a shielded wire in the form of a closed two-wire loop as a “string” for recording water surface elevations in salt and fresh water is presented. The advantage of a shielded wire as compared to a conductive one is the absence both of a decrease in its sensitivity due to salt deposition on the conductive wire and short circuits from small conductive debris. The wave gauge has a large linear dynamic range and can record the waves from millimeters to several meters high in salt and fresh water. During operation, there is no need to clean the wire; the wave gauge can be in water for a long time without losing sensitivity and with no temperature-related signal “drifts”. Conclusions. The description and scheme of the wave gauge operation is presented, as well as the de-sign of its features and the results of testing in river and sea conditions are discussed. The impact of distance between the "strings" upon the device effectiveness in salt and fresh water is studied in labora-tory conditions. For a multi-string design, a scheme for eliminating mutual interference of the wave gauge "strings" is developed. The proposed measurement scheme implies mounting the control unit of string wave gauge at a height of several dozens of meters from the "strings". It permits to install con-veniently the wave gauge above water in order to carry out the measurements from a bridge or a sea platform.

Keywords:
surface waves, wave height, gravity-capillary waves, water level, string wave gauge, in-situ measure-ments
Text
Text (PDF): Read Download
References

1. Zuykova E. M., Luchinin A. G., Titov V. I. Opredelenie harakteristik prostranstvenno-vremennyh spektrov volneniya po opticheskomu izobrazheniyu morskoy poverhnosti // Iz-vestiya Akademii nauk SSSR. Fizika atmosfery i okeana. 1985. T. 21, № 10. C. 1095–1102.

2. Mol'kov A. A., Dolin L. S. Opredelenie harakteristik vetrovogo volneniya po podvod-nomu izobrazheniyu morskoy poverhnosti // Izvestiya Rossiyskoy akademii nauk. Fizika atmosfery i okeana. 2012. T. 48, № 5. C. 617–630.

3. Salin B. M., Salin M. B. Kombinirovannyy metod izmereniya trehmernyh spektrov vol-neniya. I. Algoritmy preobrazovaniya polya opticheskoy yarkosti v raspredelenie vysot volneniya // Izvestiya vuzov. Radiofizika. 2015. T. 58, № 2. C. 123–133. EDN TQMLBF.

4. Smolov V. E., Rozvadovskiy A. F. Primenenie platformy Arduino dlya registracii vet-rovyh voln // Morskoy gidrofizicheskiy zhurnal. 2020. T. 36, № 4. S. 467–479. EDN AKIIBG. https://doi.org/10.22449/0233-7584-2020-4-467-479

5. Sterlyadkin V. V., Kulikovskiy K. V., Badulin S. I. Naturnye izmereniya formy mor-skoy poverhnosti i odnomernogo prostranstvennogo spektra volneniya // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2024. T. 21, № 1. S. 270–285. https://doi.org/10.21046/2070-7401-2024-21-1-270-285

6. Retrieval of the Statistical Characteristics of Wind Waves From the Width and Shift of the Dop-pler Spectrum of the Backscattered Microwave Signal at Low Incidence Angles / M. Panfilova [et al.] // IEEE Transactions on Geoscience and Remote Sensing. 2020. Vol. 58, iss. 3. P. 2225–2231. https://doi.org/10.1109/TGRS.2019.2955546

7. Ekstremal'nyy chernomorskiy shtorm v noyabre 2023 goda / V. A. Dulov [i dr.] // Mor-skoy gidrofizicheskiy zhurnal. 2024. T. 40, № 2. S. 325–347. EDN ESLTYQ.

8. Titov V. I., Antonov A. A. Reconstruction of Sea Surface Relief and Sea Wave Spectra Using a Sea Surface Image // Cosmic Research. 2024. Vol. 62 (Suppl 1). S150–S156. https://doi.org/10.1134/S0010952524601270

9. Experimental modelling of a multi-use floating platform for wave and wind energy harvesting / J. Sarmiento [et al.] // Ocean Engineering. 2019. Vol. 173. P. 761-773. https://doi.org/10.1016/j.oceaneng.2018.12.046

10. Uncertainty Assessment of Wave Elevation Field Measurement Using a Depth Camera / H. Kim [et al.] // Journal of Marine Science and Engineering. 2023. Vol. 11, iss. 3. 657. https://doi.org/10.3390/jmse11030657

11. Izmereniya spektra volneniya na reke s pomosch'yu strunnogo volnografa i akusticheskogo volnografa / M. S. Ryabkova [i dr.] // Materialy 20-y Mezhdunarodnoy konferencii «Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa». Moskva : IKI RAN, 2022. S. 209. https://doi.org/10.21046/20DZZconf-2022a

Login or Create
* Forgot password?