Изменчивость параметров карбонатной системы поверхностного слоя вод северной части Черного моря в период «цветения» кокколитофорид

Н. А. Орехова *, Е. Н. Корчёмкина, Е. В. Медведев, И. Н. Мукосеев

Морской гидрофизический институт РАН, Севастополь, Россия * e-mail: natalia.orekhova@mhi-ras.ru

Аннотапия

Рассмотрена динамика параметров карбонатной системы в период весенне-летнего «цветения» кокколитофорид с использованием данных о температуре и солености, параметров карбонатной системы (СО2, рН и щелочности) и показателя рассеяния назад взвесью ($b_{bv}(550)$, м⁻¹) для поверхностного слоя вод в северной части Черного моря в 127-м и 131-м рейсах НИС «Профессор Водяницкий». В исследуемые периоды (июнь 2023 г., май – июнь 2024 г.) концентрации кокколитофорид превышали 1.00 млн кл/л, также отмечено высокое значение pCO_2 (среднее 486 ± 18 мкатм). Поверхностный слой вод был пересыщен СО2 по сравнению с атмосферой, среднее пересыщение вод СО₂ составило 14 % (58 мкатм). Однако выявлено отсутствие выраженной связи между концентрациями кокколитов и величинами pCO₂, pH и щелочности, что может указывать на неосновной вклад «цветения» в концентрации CO₂ в поверхностном слое вод. Установлено, что даже в период «цветения» кокколитофорид ключевым фактором, определяющим величину рСО2 поверхностного слоя вод, является температура воды. При этом пространственное распределение концентрации взвеси, представленной кокколитами, определялось динамикой вод и структурой течений в Черном море.

Ключевые слова: карбонатная система, парциальное давление углекислого газа, кокколитофориды, Черное море

Благодарности: работа выполнена в рамках государственного задания ФИЦ МГИ РАН FNNN-2025-0001 «Мониторинг концентрации CO₂ в поверхностном слое вод и атмосфере во внутренних морях России» и FNNN-2024—0012 «Оперативная океанология». Данные получены в 127-м и 131-м рейсах НИС «Профессор Водяницкий» (Центр коллективного пользования «НИС Профессор Водяницкий» Федерального государственного бюджетного учреждения науки Федерального исследовательского центра «Институт биологии южных морей имени А. О. Ковалевского Российской академии наук»).

© Орехова Н. А., Корчёмкина Е. Н., Медведев Е. В., Мукосеев И. Н., 2025

Контент доступен по лицензии Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0)

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) License

Для цитирования: Изменчивость параметров карбонатной системы поверхностного слоя вод северной части Черного моря в период «цветения» кокколитофорид / Н. А. Орехова [и др.] // Экологическая безопасность прибрежной и шельфовой зон моря. 2025. № 3. С. 25–40. EDN VCOCEY.

Variability of Parameters of the Carbonate System of the Northern Black Sea Surface Waters During Coccolithophorid Blooms

N. A. Orekhova *, E. N. Korchemkina, E. V. Medvedev, I. N. Mukoseev

Marine Hydrophysical Institute of RAS, Sevastopol, Russia * e-mail: natalia.orekhova@mhi-ras.ru

Abstract

The paper studies dynamics of carbonate system parameters during the spring-summer coccolithophores bloom using data on temperature, salinity, carbonate system parameters (CO₂, pH and alkalinity) and backscattering index ($b_{bp}(550)$, m⁻¹) for the northern Black Sea surface waters during the 127th and 131st cruises of R/V *Professor Vodyanitsky*. Within the studied periods (June 2023, May–June 2024) coccolithophores concentrations exceeded 1.00 million cells/L, while high pCO₂ (mean 486±18 μ atm) was also observed. The surface water layer was oversaturated with CO₂ compared to the atmosphere, with a mean water CO₂ supersaturation of 14% (58 μ atm). However, no pronounced relationship was found between coccolith concentrations and pCO₂, pH and alkalinity values, which may indicate a non-core contribution of the bloom to CO₂ concentrations in the surface waters. It was found that even during the coccolithophores blooming period, temperature is the key factor determining the surface waters pCO₂. The spatial distribution of suspended sediment concentration represented by coccoliths was determined by water dynamics and current structure in the Black Sea.

Keywords: carbonate system, carbon dioxide partial pressure, coccolithophores, Black Sea

Acknowledgments: The work was carried out under state assignment of MHI RAS FNNN-2025-0001 "Monitoring of CO₂ concentrations in the surface water layer and atmosphere in Russian inland seas" and FNNN-2024-0012 "Analysis, diagnosis and real-time forecast of the state of hydrophysical and hydrochemical fields of marine water areas based on mathematical modelling using data from remote and in situ methods of measurements".

For citation: Orekhova, N.A., Korchemkina, E.N., Medvedev, E.V. and Mukoseev, I.N., 2025. Variability of Parameters of the Carbonate System of the Northern Black Sea Surface Waters During Coccolithophorid Blooms. *Ecological Safety of Coastal and Shelf Zones of Sea*, (3), pp. 25–40.

Введение

Непрерывный рост содержания CO_2 в атмосфере и дальнейшее его поглощение водами океана — одного из основных естественных стоков CO_2 — привели к снижению буферной емкости вод и изменению гидрохимических характеристик вод Мирового океана. В частности, наблюдается рост концентрации ионов водорода в морской воде [1]. По данным [2–4], за последние 250 лет показатель рН поверхностных вод океана снизился примерно на 0.11, что соответствует увеличению концентрации ионов водорода на 30–40 %. Кроме того,

в водах Мирового океана отмечается снижение концентраций кислорода и развитие зон его дефицита [5, 6]. При этом рост концентраций CO_2 в воде и атмосфере, а также изменение гидрохимических характеристик океана оказывают негативное воздействие на биологические организмы, в том числе имеющие в основе карбонатный скелет [2–4, 7].

В водах Мирового океана основной запас растворенного углерода представлен неорганической формой и составляет около 38 Гт С (1 Гт = 10^9 т) [1]. В атмосфере углерода содержится значительно меньше, и на границе поверхностного слоя вод и приводного слоя атмосферы формируются значительные его потоки [1, 7, 8]. Вследствие этого на границе с атмосферой, а также между поверхностным и более глубокими слоями океана происходит перераспределение различных форм углерода, в том числе CO_2 [2, 3], что приводит к изменению его концентраций.

Обмен CO_2 между водой и атмосферой происходит благодаря диффузии газообразного CO_2 через границу раздела фаз, при этом суммарный обмен пропорционален разности парциальных давлений газообразного CO_2 в воздухе и морской воде. Таким образом, он тесно связан с растворимостью CO_2 в морской воде (K_0) , которая определяет отношение содержания CO_2 в морской воде к парциальному давлению CO_2 в газовой фазе [5] при химическом равновесии:

$$K_0 = [CO_2]_{sw}/pCO_2, sw.$$

Помимо физического переноса и вклада температуры, динамика содержания CO_2 в поверхностном слое вод определяется не только биологическими процессами, но и комплексом абиотических химических реакций [2–4].

Совокупность продуктов растворения CO_2 и диссоциации угольной кислоты образует карбонатную систему, которую можно описать системой равновесий [1, 2, 4]:

$$CO_{2}\left(r.\right) \leftrightarrow CO_{2}\left(pactb.\right) \leftrightarrow CO_{2}\left(pactb.\right) + H_{2}O \leftrightarrow H^{+} + HCO_{3}^{-} \leftrightarrow 2H^{+} + CO_{3}^{2-}, \quad (1)$$

$$Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3$$
 (TB). (2)

Ионы водорода (H^+) (или pH) являются одним из основных компонентов, описывающих состояние карбонатной системы, их концентрация тесно связана с концентрацией CO_2 ; рост концентрации CO_2 сопровождается ростом концентрации ионов водорода и снижением pH:

$$pH = -lg \ a_{H^+}$$
, или условно можно принять $pH \approx -lg \ [H^+]$. (3)

Другим важным параметром карбонатной системы (не зависящим напрямую от концентрации CO_2) является общая щелочность (Alk), которая обычно определяется как превышение количества акцепторов протонов (оснований, образованных из слабых кислот) над количеством доноров протонов относительно контрольной точки (формально кислотная диссоциация $pK_a = 4.5$ приблизительно соответствует точке эквивалентности H_2CO_3 в морской воде). В аэробных водах океана до 96–99 % всего щелочного резерва составляет карбонатная щелочность [9], которую можно выразить следующим соотношением:

$$Alk = [HCO_3^-] + 2[CO_3^{2-}].$$
 (4)

Карбонатная щелочность определяет буферную емкость системы, и растворение CO_2 в воде сопровождается преимущественно смещением равновесий и изменением соотношения неорганических форм углерода, при этом содержание общего растворенного неорганического углерода почти не изменяется.

Основными химико-биологическими процессами, определяющими динамику компонентов карбонатной системы в водной толще, являются процессы с участием органического вещества – продукция и деструкция:

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \leftrightarrow 6 \text{ H}^+ + 6 \text{ HCO}_3^- \leftrightarrow \text{C}_6 \text{H}_{12} \text{ O}_6 + 6 \text{ O}_2.$$
 (5)

а также процессы образования/растворения карбонатов:

$$CaCO_3 + CO_2 + H_2O \leftrightarrow Ca^{2+} + 2HCO_3^{-}.$$
 (6)

Одной из групп морского фитопланктона, вовлекающихся в процессы с участием карбонатов, являются кокколитофориды. Их клетки покрыты слоями пластинок – кокколитов, образованных из карбоната кальция. Самым массовым вилом в Черном море являются клетки Emiliania huxley, их доля может достигать 99 % от общей численности кокколитофорид. Клетки этого вида могут сбрасывать кокколиты, в этом случае соотношение числа кокколитов к количеству клеток может достигать 400 [11, 12]. Очевидно, что, имея в основе карбонатный скелет, в период интенсивного «цветения» (когда численность кокколитофорид превышает 1 млн кл/л [13]) кокколиты влияют на оптические и тепловые характеристики поверхностных вод Мирового океана. В частности, они вызывают сильное рассеяние света, что значительно снижает прозрачность воды, и увеличивают альбедо водной поверхности, уменьшая тем самым инсоляцию поверхностного слоя вод [14]. Увеличение рассеяния назад приводит к возрастанию значений восходящей яркости моря и коэффициента яркости [12]. Благодаря этому оценку численности клеток кокколитофорид и сброшенных кокколитов, а также концентрации карбонатов возможно проводить по дистанционным оптическим измерениям восходящей яркости [15]. Скорость образования карбонатов, а следовательно, и скорость связывания СО2 может как увеличиваться, так и уменьшаться в зависимости от лимитирующих факторов – освещенности, температуры, концентраций биогенных элементов и углекислого газа [16, 17].

Таким образом, эти водоросли, вовлекаясь в цикл углерода, вносят вклад в бюджет CO₂. Однако учесть все факторы и однозначно связать численность и биомассу кокколитофорид со скоростью фиксации углерода очень сложно [18].

Цель работы — оценить связь параметров карбонатной системы с «цветением» кокколитофорид в поздневесенний период. Для этого в работе проанализирована пространственно-временная динамика температуры, солености, параметров карбонатной системы (CO_2 , pH и щелочности) и показателя рассеяния назад взвесью ($b_{bp}(550)$, м⁻¹) для поверхностного слоя вод в северной части Черного моря.

Материалы и методы

Данные получены в ходе 127-го (14.06.2023—07.07.2023 г.) и 131-го (27.05.2023—21.06.2024 г.) рейсов НИС «Профессор Водяницкий» в юго-восточной части Крымского побережья (рис. 1).

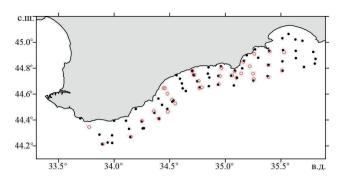


Рис. 1. Схема станций, на которых определяли параметры карбонатной системы и оптические характеристики. Красные кружочки — 127-й рейс НИС «Профессор Водяницкий», черные — 131-й рейс

Fig. 1. The scheme of stations of points where the carbonate system parameters and optical characteristics were determined. The red circles stand for stations surveyed in the 127th cruise of R/V *Professor Vodyanitsky*, the black ones stand for those surveyed in the 131st cruise

Температуру и соленость поверхностного слоя вод измеряли зондирующими комплексами Sea-Bird 911plus CTD или IDRONAUT OCEAN SEVEN 320 PlusM, на мелководных станциях (с глубиной менее 50 м) — гидрологическим CTD-зондом SeaSun CTD48M.

Пробы воды поверхностного слоя вод отбирали с глубины 1.5-3.0 м с помощью погружного насоса; забор проб воздуха выполняли на высоте 10 м над уровнем моря в отсутствие дополнительного источника CO_2 .

Концентрацию CO_2 определяли с помощью инфракрасного анализатора LI-7000 с диапазоном концентрации CO_2 0–3000 мкмоль/моль, для определения концентрации CO_2 в воде использовали специальный модуль (эквилибратор), обеспечивающий контакт анализируемой воды и воздуха для достижения равновесного pCO_2 в газовой фазе.

Прибор калибровали по аргону (объемная доля $CO_2 = 0$ мкмоль/моль) и поверочной смеси с концентрацией $CO_2 = 440$ мкмоль/моль. Погрешность метода составляет 1 % [19]. В качестве газа-носителя был использован аргон.

Величину рН измеряли с помощью иономеров И-160, И-160МП с использованием буферных растворов шкалы NBS [20]. Общую щелочность определяли методом прямого титрования с потенциометрическим окончанием, титруя 50 мл морской воды $0.02\mathrm{H}^{\,1)}$ раствором соляной кислоты, с использованием высокоточной поршневой бюретки $Metrohm\ Dosimat\ 765$ и рН-метра $Hanna\ HI$ -2215 для определения конечной точки титрования. Все измерения проводили согласно методике 2).

Экологическая безопасность прибрежной и шельфовой зон моря. № 3. 2025

¹⁾ Методы гидрохимических исследований океана / Под ред. О. К. Бордовского. Москва: Наука, 1978. 267 с.

²⁾ Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2 / Edited by A. G. Dickson, C. Goyet. Oak Ridge, Tennessee: DOE, 1994. 187 p. (ORNL/CDIAC-74).

Данные оптических характеристик

Показатель рассеяния назад на длине волны 550 нм (b_{bp} (550), м⁻¹) рассчитывали на основе данных измерений коэффициента спектральной яркости водной толщи в оптическом диапазоне при помощи полуаналитического алгоритма [21]. Для определения коэффициента яркости использовали спектрофотометр, разработанный в лаборатории отдела оптики и биофизики моря ФИЦ МГИ [22]. Методика измерений согласуется с протоколами NASA для подспутниковых измерений $^{3)}$. Для пересчета рассеяния назад на взвеси в численность отделенных кокколитов N_c (шт/м³) использовано эмпирическое соотношение из работы [23]:

$$b_{b_{\text{cons}}}(546) = 1.1 \cdot 10^{-13} N_c, \tag{7}$$

где $b_{b_{\rm cocc}}(546)$ – рассеяние назад на взвеси кокколитов на длине волны 546 нм.

Изменениями рассеяния в пределах 5 нм в данной работе пренебрегается. При этом следует отметить, что данное соотношение получено для Черного моря в 1990-е гг. и коэффициенты в нем могут оказаться на текущий момент неподходящими. Как было показано в работе [24], даже для одного района в течение нескольких дней данные коэффициенты могут значительно изменяться, при этом характер линейной связи остается постоянным. Поэтому в данной работе концентрации взвешенных кокколитов и клеток кокколитофорид должны восприниматься как оценочные значения с точностью до коэффициента, введенные для удобства восприятия, тем более что, помимо взвеси кокколитного происхождения, в воде находится и терригенная взвесь, точное количество которой оценить сложно.

Для расчета численности клеток $N_{\rm cocc}$ (млн кл/л) использована формула из работы [25], полученная также по данным 1996—1998 гг.:

$$N_{\rm cocc} = 160 \, b_{bp}(555) \, -0.32 \, R^2 = 0.82,$$
 (8)

где $b_{bp}(555)$ – рассеяние назад на длине волны 555 нм.

Результаты

По результатам расчетов, в поздневесенний гидрологический сезон рассеяние назад $b_{bp}(550)$ изменялось в диапазонах $0.008-0.020~{\rm M}^{-1}$ (2023 г.) и $0.004-0.021~{\rm M}^{-1}$ (2024 г.), тогда как в другие сезоны для Черного моря характерны значения $0.003-0.009~{\rm M}^{-1}$ [26]. Это показывает, что как минимум половину вклада в рассеяние назад вносила взвесь кокколитного происхождения.

Рассчитанное на основе этого показателя количество кокколитов и клеток кокколитофорид (в соответствии с формулами (8) и (9) [23, 25]) приведено в табл. 1. Соотношение численности клеток и кокколитов при измеренных уровнях рассеяния составляло в среднем около 88 и 94 в 127-м и 131-м рейсах соответственно. Это означает, что в формулы уже заложено предположение о связи повышенного рассеяния назад с увеличением числа отделенных кокколитов на клетку.

³⁾ Ocean optics and biogeochemistry protocols for satellite ocean colour sensor validation. Vol. 3: Protocols for satellite ocean colour data validation: in situ optical radiometry / G. Zibordi [et al.]. Dartmouth, NS, Canada: IOCCG, 2019. 67 p. http://dx.doi.org/10.25607/OBP-691

Таблица 1. Данные о гидролого-гидрохимических и биооптических характеристиках поверхностного слоя вод Черного моря в поздневесенний период

T a ble 1. Data of hydrological-hydrochemical and bio-optical characteristics of the Black Sea surface waters in late spring period

Параметр / Parameter	127-й рейс (14.06.2023-07.07.2023)* / 127 th cruise (14 June 2023-7 July 2023)*		131-й рейс (27.05.2023–21.06.2024) / 131 st cruise (27 May 2023–21 June 2024)	
	Среднее / Average	Диапазон значений / Value range	Среднее / Average	Диапазон значений / Value range
T, °C	23.0 ± 0.8	20.7-24.6	20.2 ± 1.5	16.8–25.7
S, ‰	17.88 ± 0.11	17.63-18.35	18.38 ± 0.14	17.99–18.62
$p ext{CO}_2$ sea, мкатм / $p ext{CO}_2$ sea, µatm	480 ± 7	460–501	498 ± 23	449–546
$p\mathrm{CO}_2$ air, мкатм / $p\mathrm{CO}_2$ air, μ atm	421 ± 5	411–441	435 ± 3	423–448
Δp CO ₂ , мкатм / Δp CO ₂ , µatm	59 ± 9	36–79	70 ± 31	15–117
$N_{ m cocc}$, млн кл/л / $N_{ m cocc}$, million cells/L	1.39 ± 0.28	0.87-2.95	1.16 ± 0.55	0.32-2.97
$N_{\rm c} \cdot 10^9$, ${\rm mir/m^3}$ / $N_{\rm c} \cdot 10^9$, ${\rm pcs/m^3}$	112 ± 19	82–225	102 ± 37	44–226
<i>Alk</i> , ммоль/л. / Alk, mmol/L	3.224 ± 0.019	3.170-3.279	3.250 ± 0.033	3.137–3.296
рН	8.30 ± 0.02	8.25-8.37	8.27 ± 0.02	8.23-8.32

^{*} Для синхронизации данных биооптических измерений и pCO_2 использован период 14-26 июня.

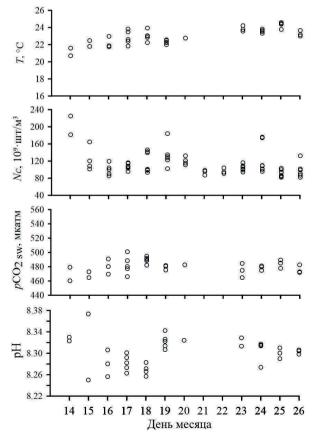
В табл. 1 приведены данные об основных гидрологических характеристиках и параметрах карбонатной системы в поверхностном слое вод Черного моря для 127-го и 131-го рейсов НИС «Профессор Водяницкий».

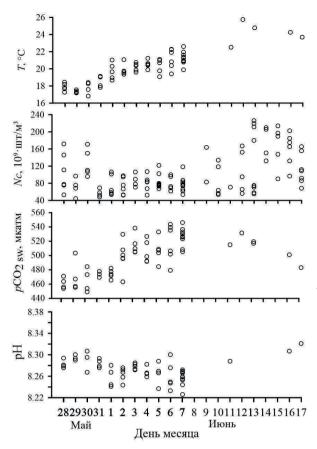
Как видно из табл. 1, в исследуемый период наблюдалось «цветение» кокколитофорид с разной степенью интенсивности, а концентрация кокколитов в среднем превышала $100 \cdot 10^9$ шт/м³. Далее в работе будет обсуждаться параметр концентрации кокколитов (N_c) как наиболее приближенный к реальности, поскольку оптические измерения позволяют рассчитать этот параметр напрямую, а соотношение клеток и кокколитов зависит от стадии «цветения». В среднем, как отмечено выше, на одну клетку приходится около 90 частиц кокколитов. Кроме того, на наш взгляд, именно кокколиты должны вносить наибольший вклад в концентрацию CO_2 по сравнению с клетками кокколитофорид (в соответствии с уравнением (6)).

^{*} The bio-optic and pCO₂ measurements were synchronized using the period of 14–26 June.

При этом во всех случаях поверхностный слой вод был пересыщен CO_2 по сравнению с атмосферой (табл. 1), то есть воды являлись источником углекислого газа для атмосферы.

В июне 2023 г. число клеток коколитофорид достигало 2.95 млн кл/л (при среднем значении 1.39 млн кл/л), количество кокколитов составляло в среднем $112\cdot 10^9$ шт/м³ (табл. 1). Преобладание клеток с карбонатной основой способствовало высоким значениям $p\text{CO}_2$ (образование CO_2 в соответствии с уравнением (6)) и пересыщению поверхностного слоя вод CO_2 по сравнению с атмосферой. В среднем $p\text{CO}_2$ поверхностного слоя вод составило 480 ± 7 мкатм при диапазоне изменчивости от 460 до 501 мкатм. Увеличение температуры поверхностного слоя вод (до 24.6 °C при среднем значении 23.0 \pm 0.8 °C) также поддерживало высокие значения $p\text{CO}_2$, на что указывает средний характер связи этих параметров — коэффициент корреляции $p\text{CO}_2$ с температурой в поверхностном слое вод равен 0.52.


На рис. 2 приведена динамика изучаемых параметров в ходе 127-го рейса. К основным трендам можно отнести увеличение температуры, рост $p\mathrm{CO}_2$ и снижение числа кокколит.


На рис. 3 приведено изменение параметров в конце весеннего гидрологического сезона 2024 г. (конец мая — июнь). В этот период также наблюдалось «цветение» кокколитофорид — в среднем 1.16 млн кл/л при диапазоне значений 0.32-2.96 млн кл/л, количество кокколитов составило в среднем $102\cdot10^9$ шт/м³ (табл. 1). Как и следовало ожидать, поверхностный слой вод

также был существенно пересыщен CO_2 по сравнению с атмосферой (градиент pCO_2 мог достигать более 100 мкатм), и в поверхностных водах Черного моря наблюдались глубоко эвазионные условия (поток CO_2 направлен из воды в атмосферу). Среднее значение pCO_2 в поверхностном слое вод составило 498 мкатм, диапазон изменения pCO_2 — от 449 до 546 мкатм (10%).

Р и с. 2. Динамика рН, pCO₂, числа кокколит и температуры поверхностного слоя вод в июне 2023 г. (127-ой рейс НИС «Профессор Водяницкий»)

Fig. 2. Changes in pH, pCO₂, coccoliths and temperature of the surface water layer in June 2023 (127th cruise of R/V *Professor Vodyanitsky*)

Р и с. 3. Динамика рН, pCO₂, числа кокколит и температуры поверхностного слоя вод в мае — июне 2024 г. (131-й рейс НИС «Профессор Водяницкий»)

Fig. 3. Dynamics of pH, pCO₂, coccoliths and temperature of the surface water layer in May–June 2024 (131st cruise of R/V *Professor Vodyanitsky*)

Температура поверхностного слоя вод достигла 20 °C, при этом с ростом температуры наблюдалось увеличение pCO_2 — максимальные значения рСО2 в воде соответствовали максимальным температурам поверхностного слоя вод (рис. 3). Коэффициент корреляции рСО2 и температуры поверхностного слоя вод составил 0.68, что указывает на более существенный вклад температуры в концентрации СО2.

Значения рН (рис. 2, 3) и щелочности в исследуемые периоды изменялись в узких пределах. Средние значения рН составили 8.30 ± 0.02 и 8.27 ± 0.02 в 2023 и 2024 гг. соответственно (табл. 1). Эти значения соответствуют данным многолетних наблюдений для данного периода.

Щелочность также мало изменялась на межгодовом масштабе -3.224 ± 0.019 и 3.250 ± 0.033 в 2023 и 2024 гг. соответственно. При этом наблюдалась ее пространственная неоднородность, что в первую очередь было обусловлено вкладом солености (коэффициент корреляции 0.73), а не влиянием физико-химических процессов трансформации органического вещества или «цветением».

Обсуждение

В период весенне-летнего «цветения» фитопланктона (конец мая – июнь) основу биомассы (50–60 %) создают кокколитофориды [11, 13, 27]. Их развитие в этот период определяется вкладом ряда абиотических факторов: света, температуры и концентрации биогенных веществ, а также биотическим – микрозоопланктонным выеданием [11].

В исследуемые периоды концентрации кокколитофорид (более 1.0 млн кл/л, табл. 1) указывают на их «цветение». В поверхностном слое вод также отмечено высокое $p\mathrm{CO}_2$ (среднее 486 ± 18 мкатм) при среднем значении 442 ± 44 мкатм (по нашим данным за 2015–2024 гг., охватывающим период с марта по декабрь).

Среднее пересыщение вод CO_2 по сравнению с атмосферой составило 14 % (58 мкатм). Можно предположить, что высоким значениям pCO_2 способствовало «цветение» кокколитофорид, которое сопровождается продукцией CO_2 (уравнение (6), справа налево). Кроме того, рост температуры поверхностного слоя вод (табл. 1) способствует смещению системы карбонатного равновесия в сторону накопления CO_2 (уравнение (1)), а также интенсификации деструкции органического вещества (уравнение (5), справа налево), образованного в период весеннего «цветения» фитопланктона.

В июне 2023 г. (127-й рейс НИС «Профессор Водяницкий») среднее содержание кокколитофорид составляло 1.39 млн кл/л, что соответствовало $112 \cdot 10^9$ шт/м³ кокколитов (табл. 1), однако в течение месяца отмечалось снижение количества кокколитов (см. рис. 2). Это может указывать на затухание «цветения» и постепенное растворение карбонатов, происходящее по схеме уравнения (6) (направление слева направо). При этом процессе должно наблюдаться снижение концентрации СО2 и увеличение концентрации гидрокарбонатов, что сопровождается увеличением рН, и, в соответствии с уравнениями (4) и (6), должна увеличиваться щелочность. Однако ни в пространственном отношении, ни в сезонном ходе такой тенденции не наблюдалось: по данным многолетних наблюдений, для данного региона в отсутствие «цветения» кокколитофорид (март) средние значения щелочности составляют 3.281 ± 0.062 ммоль/дм³, а рH -8.26 ± 0.09 , что статистически не отличается от их поздневесенних значений (табл. 1). При этом воды значительно недонасыщены СО2 по сравнению с атмосферой (среднее значение градиента $pCO_2 = -46 \pm 21$ мкатм). Таким образом, можно предположить, что данный биологический процесс не является определяющим ни для динамики СО2, ни для динамики других гидрохимических характеристик (рН и щелочность). Это также подтверждают данные корреляционного анализа – коэффициент корреляции pCO_2 с числом кокколитов составляет -0.22, что указывает на слабый характер связи. Наиболее тесная связь рСО2 была с температурой (коэффициент корреляции 0.52) и рН (коэффициент корреляции -0.53).

В конце мая — июне 2024 г. также отмечено «цветение» кокколитофорид (1.16 млн кл/л, табл. 1), что соответствовало $102 \cdot 10^9$ шт/м³ кокколитов. По динамике исследуемых гидрохимических и биооптических параметров можно выделить два периода: 28 мая — 7 июня и 11—17 июня (рис. 3). Так, изменение числа кокколитов указывает на развитие «цветения» в течение рейса с мая по июнь. В первый период среднее число кокколитов составило $(83 \pm 20) \cdot 10^9$ шт/м³, во второй — $(131 \pm 49) \cdot 10^9$ шт/м³, при этом максимальные значения могли достигать $226 \cdot 10^9$ шт/м³.

В первый период на фоне роста температуры поверхностного слоя вод и отсутствия видимого тренда к увеличению числа частиц кокколитов отмечается увеличение $p\mathrm{CO}_2$ и снижение pH поверхностного слоя вод (рис. 3). Это может свидетельствовать о начале формирования и постепенного накопления кокколитов, сопровождающемся увеличением $p\mathrm{CO}_2$ (уравнение (6) справа налево) и снижением pH (рис. 3). Следующий период (11–17 июня) характеризуется ростом числа кокколитов, снижением $p\mathrm{CO}_2$ и ростом pH (рис. 3). Увеличение числа кокколитов и концентрации кокколитофорид (средняя концентрация в этот период составила 1.66 млн кл/л) указывает на «цветение».

34

Однако наблюдаемое при этом постепенное снижение pCO $_2$ и увеличение pH, вероятнее всего, свидетельствует о наличии дополнительного фактора, способствующего связыванию CO $_2$. При этом образование коккоколит не является основным процессом, определяющим концентрацию CO $_2$ и ионов водорода в данном случае.

Таким образом, по динамике числа кокколитов в поздневесенний период можно предположить наличие трех периодов: начало «цветения» и постепенное накопление кокколитофорид (конец мая — начало июня, среднее число кокколитов $83\cdot10^9$ шт/м³), их накопление и вспышка «цветения» в течение июня (среднее число кокколитов $131\cdot10^9$ шт/м³), а затем затухание «цветения» к концу июня (среднее число кокколитов $112\cdot10^9$ шт/м³) с последующим разложением карбонатов (рис. 2, 3).

Мы пытались описать динамику $p\text{CO}_2$ с точки зрения процессов, происходящих с вовлечением карбонатного углерода и его трансформацией, а также изменением параметров карбонатной системы (уравнения (1), (2), (5), (6)). Однако отсутствие статистически значимой связи числа клеток кокколитофорид (и числа кокколитов) как с $p\text{CO}_2$ (коэффициент корреляции -0.22 и -0.06 для 127-го и 131-го рейсов соответственно), так и с щелочностью (коэффициент корреляции 0.05 и 0.09 для 127-го и 131-го рейсов соответственно), а также умеренный характер их связи с величиной рН (коэффициенты корреляции 0.30 и 0.40 для 127-го и 131-го рейсов соответственно) указывает на непреобладающий вклад кокколитофорид в состояние карбонатной системы и ее параметры.

Отсутствие связи между концентрацией кокколитофорид и величиной щелочности позволяет предположить, что изменение щелочности не связано с биологическими процессами, а определяется в первую очередь абиотическим фактором — изменением солености (коэффициент корреляции 0.86 и 0.88 для 127-го и 131-го рейсов соответственно). При этом нужно отметить небольшие диапазоны изменения щелочности в течение рейсов — около 4 % (статистически значимыми являются изменения более 2 %) от среднего значения.

Как и следовало ожидать, в соответствии с уравнениями (1)–(5), изменение рН носило характер, обратный изменению $p\text{CO}_2$, — увеличение $p\text{CO}_2$ сопровождалось снижением рН. Наиболее явно эта зависимость была выражена в 131-м рейсе. В первый период (28.05.2024–07.06.2024) рост $p\text{CO}_2$ составил 10%, а снижение рН было менее выраженным в процентном соотношении, однако при этом концентрация ионов водорода (уравнение (3)) увеличилась на ~ 7%. После (11.06.2024–17.06.2024) наблюдалось снижение $p\text{CO}_2$ на 8% и концентрации ионов водорода на 7%. Коэффициент корреляции рН и $p\text{CO}_2$ составил -0.53 и -0.57 для 127-го и 131-го рейсов соответственно, что указывает на средний характер связи и вклад абиотической составляющей в динамику CO_2 (уравнение (1), система карбонатных равновесий).

Тем не менее в наибольшей степени проявлялся вклад температурного фактора в динамику $p\text{CO}_2$ – коэффициенты корреляции составляют 0.52 и 0.71 для 127-го и 131-го рейсов соответственно. При этом увеличение температуры способствует как интенсификации биологических процессов, так и сдвигу равновесий в карбонатной системе в сторону накопления CO_2 .

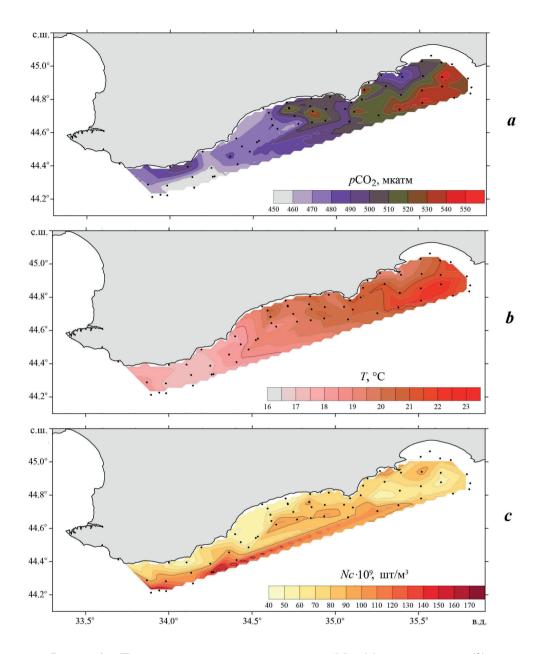


Рис. 4. Пространственное распределение $p\mathrm{CO}_2$ (a), температуры (b) и числа кокколитов (c) в поверхностном слое вод по данным 131-го рейса (1-й этап, 28.05.2024–07.06.2024)

Fig. 4. Spatial distribution of $pCO_2(a)$, temperature (b) and coccoliths (c) in the surface water layer based on data from the 131^{st} cruise (1^{st} stage, 28 May 2024-7 June 2024)

Вклад температуры в величину pCO_2 поверхностного слоя вод также наблюдается и в пространственной изменчивости исследуемых параметров (на примере 131-го рейса) – из рис. 4 видно, что районы максимальных значений pCO_2 совпадают с районами повышенной температуры поверхностного слоя вод.

Распределение кокколитов качественно не совпадало с распределением pCO_2 (рис. 4, a, c), что также подтверждает предположение о неосновном вкладе биотического фактора в величину pCO_2 поверхностного слоя вод.

На основе расчетных данных (рис. 4, *c*) и данных спутниковых снимков (для примера URL: http://dvs.net.ru/mp/data/modis/2406/24062955.gif) предположено, что поля взвеси, основой которой являются преимущественно кокколиты, формируются под действием гидродинамического фактора — водной массы, обогащенной клетками кокколитофорид и произведенным ими взвешенным веществом, которая переносится вместе с Основным Черноморским течением из южных районов моря. В итоге образуется поле концентраций взвешенного вещества, где более прозрачная вода прижата к берегу, а более мутная наблюдается в мористой части полигона.

Выводы

В исследуемые периоды (май — июль) в поверхностном слое вод наблюдалось «цветение» кокколитофорид (более $100\,$ млн кл/л,), а доля взвеси кокколитного происхождения составляла $50\,$ % и более. Пространственное распределение концентрации взвеси, представленной кокколитами, определялось динамикой вод и структурой течений в Черном море

Воды были пересыщены CO_2 по сравнению с атмосферой, среднее pCO_2 составило 486 ± 18 мкатм, что на ~20 % превышает среднегодовое значение pCO_2 для данного региона.

Анализ динамики числа кокколитов в поздневесенний период позволил выделить три периода: начало «цветения» и постепенное накопление кокколитофорид (конец мая — начало июня, среднее число кокколитов $83 \cdot 10^9$ шт/м³), их накопление и вспышка «цветения» в течение июня (среднее число кокколитов $131 \cdot 10^9$ шт/м³), а затем затухание «цветения» к концу июня (среднее число кокколитов $112 \cdot 10^9$ шт/м³) с последующим разложением карбонатов.

Установлено отсутствие статистически значимой связи числа клеток кокколитофорид (и числа кокколитов) как с pCO $_2$ (коэффициент корреляции -0.22 и -0.06 для 127-го и 131-го рейсов соответственно), так и с щелочностью (коэффициент корреляции 0.05 и 0.09 для 127-го и 131-го рейсов соответственно), а также умеренный характер их связи с величиной рН (коэффициенты корреляции 0.30 и 0.40 для 127-го и 131-го рейсов соответственно). Отсутствие выраженной связи между концентрациями кокколитов и величинами pCO $_2$, рН и щелочности позволяет предположить, что, несмотря на вклад «цветения» кокколитофорид в поддержание высоких концентраций CO $_2$ в верхнем слое вод, этот фактор не является основным.

В наибольшей степени вклад в динамику pCO $_2$ вносит температурный фактор — коэффициенты корреляции составили 0.52 и 0.71 для 127-го и 131-го рейсов соответственно. Это обусловлено прежде всего тем, что увеличение температуры способствует как интенсификации биологических процессов, так и

сдвигу равновесий в карбонатной системе в сторону накопления CO_2 . Таким образом, даже в период «цветения» кокколитофорид ключевым фактором, определяющим величину pCO_2 поверхностного слоя вод, является температура.

Список литературы

- 1. Zeebe R. E. History of seawater carbonate chemistry, atmospheric CO₂, and ocean acidification // Annual Review of Earth and Planetary Sciences. 2012. Vol. 40, iss. 1. P. 141–165. https://doi.org/10.1146/annurev-earth-042711-105521
- Global sea-air CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects / T. Takahashi [et al.] // Deep Sea Research. Part II: Topical Studies in Oceanography. 2002. Vol. 49, iss. 9–10. P. 1601–1622. https://doi.org/10.1016/s0967-0645(02)00003-6
- 3. *Wanninkhof R*. Relationship between wind speed and gas exchange over the ocean revisited // Limnology and Oceanography: Methods. 2014. Vol. 12, iss. 6. P. 351–362. https://doi.org/10.4319/lom.2014.12.351
- 4. Schulz K. G., Maher D. T. Atmospheric carbon dioxide and changing ocean chemistry // Marine Pollution Monitoring, Management and Mitigation / Edited by A. Reichelt-Brushett. Cham: Springer, 2023. P. 247–259. (Springer Textbooks in Earth Sciences, Geography and Environment; vol. 11). https://doi.org/10.1007/978-3-031-10127-4 11
- 5. *DeVries T.* The ocean carbon cycle // Annual Review of Environment and Resources. 2022. Vol. 47. P. 317–341. https://doi.org/10.1146/annurev-environ-120920-111307
- 6. Acidification of the global surface ocean: What we have learned from observations / R. A. Feely [et al.] // Oceanography. 2023. Vol. 36, iss. 2–3. P. 120–129. https://doi.org/10.5670/oceanog.2023.222
- 7. Zeebe R. E., Wolf-Gladrow D. CO₂ in seawater: equilibrium, kinetics, isotopes. Amsterdam, The Netherlands: Elsevier Science, 2001. 360 p. (Elsevier Oceanography Series; vol. 65).
- 8. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea) / G. L. Jessen [et al.] // Science Advances. 2007. Vol. 3, iss. 2. e1601897. https://doi.org/10.1126/sciadv.1601897
- 9. Decline of the Black Sea oxygen inventory / A. Capet [et al.] // Biogeosciences. 2016. Vol. 13, iss. 4. P. 1287–1297. https://doi.org/10.5194/bg-13-1287-2016
- 10. *Diaz R. J., Rosenberg R.* Spreading dead zones and consequences for marine ecosystems // Science. 2008. Vol. 321, iss. 5891. P. 926–929. https://doi.org/10.1126/science.1156401
- 11. *Стельмах Л. В.* Эколого-физиологические основы развития весеннего «цветения воды» кокколитофоридой *Emiliania huxleyi* в Черном море // Системы контроля окружающей среды. 2018. № 13 (33). С. 85–92. EDN YIWYJV.
- 12. *Корчемкина Е. Н., Маньковская Е. В.* Оптические характеристики вод Черного моря в районе океанографической платформы во время цветения кокколитофорид в 2012 и 2017 гг. // Фундаментальная и прикладная гидрофизика. 2020. Т. 13, № 2. С. 25–34. https://doi.org/10.7868/S2073667320020033
- 13. *Mikaelyan A. S., Silkin V. A., Pautova L. A.* Coccolithophorids in the Black Sea: Their interannual and long-term changes // Oceanology. 2011. Vol. 51, iss. 1. P. 39–48. EDN OHRAVF. https://doi.org/10.1134/S0001437011010127
- 14. *Kopelevich Ol., Sheberstov S., Vazyulya Sv.* Effect of a Coccolithophore Bloom on the Underwater Light Field and the Albedo of the Water Column // Journal of Marine Science and Engineering. 2020. Vol. 8. 456. https://doi.org/10.3390/jmse8060456

- 15. *Hopkins J., Balch W. M.* A new approach to estimating coccolithophore calcification rates from space // Journal of Geophysical Research: Biogeosciences. 2018. Vol. 123, iss. 5. P. 1447–1459. https://doi.org/10.1002/2017JG004235
- Barcelos e Ramos J., Müller M. N., Riebesell U. Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations // Biogeosciences. 2010. Vol. 7, iss. 1. P. 177–186. https://doi.org/10.5194/bg-7-177-2010
- 17. Zhang Y., Gao K. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO2 under nutrient limitation // Journal of Photochemistry and Photobiology B: Biology. 2021. Vol. 217. 112145. https://doi.org/10.1016/j.jphotobiol.2021.112145
- 18. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore *Emiliania huxleyi*: Environmental controls on E. huxleyi physiology / Y. Feng [et al.] // Limnology and Oceanography. 2016. Vol. 62, iss. 2. P. 519–540. https://doi.org/10.1002/lno.10442
- 19. Хоружий Д. С. Использование приборного комплекса AS-C3 для определения парциального давления углекислого газа и концентрации неорганического углерода в морской воде // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2010. Вып. 23. С. 260–272. EDN WLBMPX.
- 20. Современные методы гидрохимических исследований океана / Отв. ред. О. К. Бордовский, А. М. Чернякова. Москва: ИО РАН, 1992. 201 с.
- 21. Определение концентрации примесей в морской воде по спектру яркости восходящего излучения / М. Е. Ли [и др.] // Морской гидрофизический журнал. 2015. № 6. С. 17–33. EDN VHEWVT. https://doi.org/10.22449/0233-7584-2015-6-17-33
- 22. *Ли М. Е., Мартынов О. В.* Измеритель коэффициента яркости для подспутниковых измерений биооптических параметров вод // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2000. Вып. 1. С. 163–173. EDN BELAJW.
- 23. Многолетняя изменчивость прозрачности воды в Черном море и факторы, обусловившие ее сильное снижение в конце 80-х начале 90-х годов / В. И. Маньковский [и др.]. Севастополь: МГИ, 1996. 32 с.
- 24. The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration / W. M. Balch [et al.] // Limnology and Oceanography. 1996. Vol. 41, iss. 8. P. 1684–1696. https://doi.org/10.4319/lo.1996.41.8.1684
- 25. *Чурилова Т. Я., Суслин В. В.* О причинах доминирования Emiliania huxleyi в фитопланктоне глубоководной части Черного моря в начале лета // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2012. Вып. 26, т. 2. С. 195–203. EDN VWSEIL.
- 26. Optical properties of the particles in the Crimea coastal waters (Black Sea) / M. Chami [et al.] // Journal of Geophysical Research: Oceans. 2005. Vol. 110, iss. C11. C11020. https://doi.org/10.1029/2005JC003008
- 27. *Лифанчук А. В., Федоров А. В.* Смена экологических стратегий в фитопланктонном сообществе северо-восточной части Черного моря в течение годового цикла // Экология гидросферы. 2018. № 1 (2). EDN YLRSLB.

Поступила 05.03.2025 г.; одобрена после рецензирования 05.05.2025 г.; принята к публикации 24.06.2025 г.; опубликована 30.09.2025 г.

Об авторах:

Орехова Наталья Александровна, заведующая лабораторией мониторинга и исследования потоков парниковых газов и кислорода в морской среде, Морской гидрофизический институт РАН (299011, Россия, г. Севастополь, ул. Капитанская, д. 2), кандидат географических наук, SPIN-код: 9050-4772, ORCID ID: 0000-0002-1387-970X, ResearcherID: I-1755-2017, natalia.orekhova@mhi-ras.ru

Корчёмкина Елена Николаевна, старший научный сотрудник, Морской гидрофизический институт РАН (299011, Россия, г. Севастополь, ул. Капитанская, д. 2), кандидат физико-математических наук, SPIN-код: 9973-4657, ORCID ID: 0000-0003-0526-4083, ResearcherID: I-1595-2015, lisenik@mail.ru

Медведев Евгений Витальевич, младший научный сотрудник, Морской гидрофизический институт РАН (299011, Россия, г. Севастополь, ул. Капитанская, д. 2), SPIN-код: 6332-4572, ORCID ID: 0000-0003-0624-5319, ResearcherID: C-7016-2016, eugenemedvedev@mhi-ras.ru

Мукосеев Игорь Николаевич, старший научный сотрудник, Морской гидрофизический институт РАН (299011, Россия, г. Севастополь, ул. Капитанская, д. 2), **SPIN-код:** 7600-4992, **ORCID ID:** 0009-0000-3485-1004, *igor.mukos@gmail.com*

Заявленный вклад авторов

Орехова Наталья Александровна — разработка концепции, формулировка и постановка задачи исследований, анализ и обобщение результатов исследования

Корчёмкина Елена Николаевна – разработка концепции, анализ и обобщение результатов исследования, подготовка текста статьи

Медведев Евгений Витальевич — участие в обсуждении материалов статьи, анализ и обобщение результатов исследования, подготовка текста статьи

Мукосеев Игорь Николаевич – подготовка материалов статьи

Все авторы прочитали и одобрили окончательный вариант рукописи.