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Abstract 
Purpose. The study is aimed at generalizing the Arakawa–Lamb scheme for discrete equations of 
the horizontal components of three-dimensional absolute vorticity of an ideal fluid and analyzing its 
features. 
Methods and Results. To derive the finite-difference three-dimensional equations of absolute 
vorticity, a grid containing more unknowns than equations is applied, that permits obtaining 
the discrete motion equations which, in their turn, yield the equation for absolute vorticity. 
The resulting expression is presented in the form of three terms reflecting different features of 
the discrete equations. The first term provides the fulfillment of the energy conservation law for 
discrete statement, the second term represents the presence of two quadratic invariants for 
a divergence-free flow, the addition of the third term results in the Arakawa–Lamb scheme under 
the shallow water approximation. It follows from the presented expression that the second and third 
terms, which have no analogues in the continuous statement, can be interpreted as a zero 
approximation with the second order of accuracy. Thus, selection of these expressions makes it 
possible to construct the schemes with the required features of the conservation laws. 
Conclusions. The presented form of the discrete equation for three-dimensional absolute vorticity 
enables the construction of schemes with the desired features. The difference equations for 
the horizontal components of absolute vorticity are derived, which possess two quadratic invariants. 
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Introduction 
One of the fundamental results in the study of partial differential equations is 

Noether’s theorem [1], which establishes a one-to-one correspondence between 
the properties of solutions to such systems and the conservation laws they possess. 
A clear example of its application to shallow water equations is the energy and 
potential enstrophy preserving scheme (conservation laws), which ensures 
the constancy of the mean wavenumber weighted by energy (a solution property). 

For the two-dimensional dynamics finite-difference system of equations, work 
[2] derived schemes that preserve energy and the square of vorticity for non-
divergent motion. For the shallow water approximation, work [3] presents 
a discrete system of equations with two quadratic invariants: energy and potential 
enstrophy. As a consequence of this property, in accordance with the differential 
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formulation, energy transfer towards small scales is prohibited. In [4], the Nambu 
bracket was discretized while preserving the antisymmetry property. This made it 
possible to generalize the Arakawa–Lamb scheme and derive a fully discrete 
(in time and space) finite-difference scheme possessing two quadratic invariants: 
energy and potential enstrophy. Building on this, we derived explicit finite-
difference shallow water equations that conserve mass, circulation, energy and 
potential enstrophy on both a regular square grid and an unstructured triangular 
grid. The latter includes a regular hexagonal grid as a special case. 

In [5], the classical Arakawa–Lamb scheme, which was originally formulated 
for orthogonal square grids, is extended to arbitrary non-orthogonal polygonal 
grids. The scheme obtained in [4] is also generalized to arbitrary orthogonal 
spherical polygonal grids in such a way as to ensure the conservation of energy and 
potential enstrophy. For the shallow water equations in the case of generalized 
curvilinear coordinates, work [6] derives an energy- and potential enstrophy-
preserving finite-difference scheme based on tensor analysis. The paper 
demonstrates that exact conservation of discrete energy and potential enstrophy 
prevents distortion of the forward and inverse energy cascades in quasi-two-
dimensional turbulent flow, thereby enhancing the stability of the scheme. 

For shallow water equations that incorporate the full Coriolis force and bottom 
topography, work [7] presents a scheme conserving energy and potential enstrophy. 
The authors observe that preserving discrete energy and potential enstrophy 
prevents distortion of the forward and inverse energy cascades in quasi-two-
dimensional turbulence, thereby improving the stability of the scheme. 

This paper is a continuation of studies [8, 9] and presents a specific rewriting 
of the Arakawa–Lamb scheme. This allows the terms responsible for different 
conservation properties to be explicitly isolated in the equation for absolute 
velocity vorticity, and the scheme to be generalized for discrete equations of 
the horizontal components of velocity vorticity. 

 
Discrete equations of motion 

Let us consider the differential equations of an incompressible fluid in 
a potential force field, assuming the absence of viscosity and external sources. 
In the Boussinesq approximation, in a Cartesian coordinate system and for 
a domain Ω with boundary ∂Ω, the velocity of motion satisfies the following 
system of equations in in the Gromeka–Lamb form: 

 

0 0

ρU 1ξ U ( ) ,
ρ ρ

x P E g
t

∂
+ = − ∇ + +

∂






                                      (1) 

 

U 0∇ =


 .                                                       (2) 
The following notations are introduced: U ( , , )u v w=



 – components of the flow 
velocity vector along the (x, y, z) axes, directed eastward, northward, and vertically 
downward, respectively; g = (0, 0, g) – free fall acceleration ; (P, ρ) – pressure and 
density of seawater; ρ0 = 1 g/cm3  ((henceforth, pressure and density are assumed to 
be normalized by ρ0); f



=  (0,0, )zf  – Coriolis parameter, where zf  = 2ω sinϕ; 
ω – angular velocity of Earth’s rotation; ϕ – latitude. 
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In equation (1), the absolute vorticity and kinetic energy of motion are 
introduced: 

 

ξ rot ,=  U + f
 



   ξ ξ ξ ,x y z zw v u w v u= - , = - , = - + f
y z z x x y

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

              (3) 

 

2 2 2

0ρ .
2

u v wE + +
=                                                (4) 

 

In terms of tensor analysis, 

,= + fα αβγ γ α
βξ ε ∂ υ  where  ( , , ) ( , , ).x y z u v wυ υ υ =  

 

Here and henceforth, , ,α β γ  can only take distinct values of , ,x y z  
simultaneously; αβγε  is the Levi-Civita tensor and for each fixed α, summation is 
performed over β and γ. 

 

At z = 0 ,tw = −ς  at z = H(x, y) 0w = .                                   (5) 
 

No-penetration conditions are imposed on lateral walls: 
for meridional boundaries 0,u =  for zonal boundary segments 0.v =                   (6) 

Initial conditions: 
at t = t0   u = u0, v = v0, w = w0. 

The equation for absolute vorticity takes the following form: 

(ξ × U) ( ).g
t

∂ξ
+ ∇× = ∇× ρ

∂






                                                   (7) 
 

We approximate the uneven-bottom basin using boxes whose centers correspond to 
the integer values of the indices i, j, k ( 1 1,..., , ,..., ,= =N Mi i i j j j  k = 1,…, Ki,j), 
while their faces correspond to the values i+1/2, j+1/2, k+1/2. The horizontal box 
dimensions ( yx hh , ) are constant, while the vertical approximation uses non-

uniform spacing ( 1/2
1/2 1/2 1,k k

z k k z k kh z z h z z+
+ − += − = − ).  

Finite-difference operators are expressed as (similarly for j, k): 

1/2, , 1/2, , 1/2, , 1/2, ,
, , , ,

2 2 2
, , , , , , ,

, ,
2

,

x i j k i j k i j k i j k
i j k x i j k

x

x y i j k x i j k y i j k

h
+ − + −φ + φ φ −φ

φ = δ φ =

∇ φ = δ φ + δ φ                  (8)
 

, ,

, , , ,
, , 1 , 1

1 1{ } , { } , .
i j i j

k

K K
V k k

i j k x y i j k z x y z x y
i j i j k i j kk

h h h h h V h h h
V

Ω

= =

φ = φ φ = φ =
Ω ∑ ∑ ∑ ∑ ∑

 
 

Horizontal velocity components are calculated at kz  horizons, while 
vertical velocity is computed at 1/2kz + horizons – vertical velocity, kΩ  denotes 
the surface area at k horizon. The distribution of the variables is shown in Fig. 1.  
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F i g. 1 Distribution of variables in the box (i, j, k) and on its edges represents the absolute vorticity 
components ξ , ξ , ξx y z  

The differential-difference equations of motion (differential in time) [3, 9] 
are written below: 

1/2, ,
1/2, / 1/2, ,1/2, , 1/2, ,

, , ( ),i j k z y
x i j k i j ki j k i j k

du
v w E P

dt
+

+ ++ +
   − ξ + ξ = −δ +             (9) 

, 1/2,
, 1/2, , 1/2,, 1/2, , 1/2,

, , ( ),i j k z x
y i j k i j ki j k i j k

dv
u w E P

dt
+

+ ++ +
   + ξ − ξ = −δ +       (10) 

, , 1/2
, , 1/2 , , 1/2, , 1/2 , , 1/2

, , 1/2

, , ( )

.

i j k y x
z i j k i j ki j k i j k

i j k

dw
u v E P

dt
g

+
+ ++ +

+

   − ξ + ξ = −δ + +   

+ ρ
   (11) 

Notations have been introduced for discrete analogs of nonlinear terms:

1/2, , 1/2, , , 1/2, , 1/2,
, , , , , , , ,z y z x

i j k i j k i j k i j k
v w u w

+ + + +
       ξ ξ ξ ξ       

, 1/2,−i j kv

1/2, 1/2,
z

i j kξ + +
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, , 1/2 , , 1/2
, , ,y x

i j k i j k
u v

+ +
   ξ ξ    , whose specific form will be presented later. 

In accordance with notations (3), (4), (8), the components of velocity vorticity 
(see Figure) and kinetic energy take the following form: 

, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2( ) ( ),x
i j k y i j k z i j kw v+ + + + + +ξ = δ − δ  

 

1/2, , 1/2 1/2, , 1/2 1/2, , 1/2( ) ( ),y
i j k z i j k x i j ku w+ + + + + +ξ = δ − δ                           (12) 

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2( ) ( ) ,z z
i j k x i j k y i j k jv u f+ + + + + + +ξ = δ − δ +  

2 2 2
, , , , , ,

, , .
2

x y z

i j k i j k i j k
i j k

u v w
E

+ +
=  

 

From approximation (5) it follows that at points 1 / 2, 1 / 2, 1 / 2i j k+ + +  
the following holds: 

 

, 1/2, 1/2 1/2, , 1/2 1/2, 1/2, 0x y z
x i j k y i j k z i j k+ + + + + +δ ξ + δ ξ + δ ξ = .                  (13) 

 

Let us consider motion in the (x, y) plane. Unlike in the classical work [3], we 
write the nonlinear term

1/2, ,
, z

i j k
v

+
 ξ  in the first equation and 

, 1/2,
, z

i j k
u

+
 ξ   – 

in the second equation in the following form: 

2 2

1/2, , 1/2, 1/2, , 1/2, , 1/2, ,

I
II

1/2, , 1/2, , 1/2, , 1/2, ,

III

[ , ] ( )( )
48

1{[ ( )] [ ]}
6 2

x
xyy x yz z

i j k i j i j k x y i j k x y i j k

x x xx y z z
x i j k y i j k i j k x y i j k

h h
v v v

h h
u u

+ + + + +

+ + + +

 − ξ = − ξ − δ δ δ δ ξ + 

+ δ δ ξ − δ δ ξ





 

,


(14) 

 

2 2

, 1/2, , 1/2, , 1/2, , 1/2, , 1/2,

I
II

, 1/2, , 1/2, , 1/2, , 1/2,

III

[ , ] ( )( )
48

1{[ ( )] [ ]}
6 2

y
xyx x yz z

i j k i j k i j k y x i j k x y i j k

y y yx y z z
y i j k x i j k i j k x y i j k

h h
u u u

h h
v v

+ + + + +

+ + + +

 ξ = ξ + δ δ δ δ ξ − 

− δ δ ξ + δ δ ξ







.


     (15) 

 

After standard transformations taking into account equality (13), we proceed to 
discrete equations of nondivergent flow in the (x, y) plane and obtain the equation 
for velocity vorticity. This equation possesses conservation laws for energy, 
vorticity and enstrophy (squared vorticity), all of which must be maintained in 
the finite-difference formulation. The significance of expressing nonlinear terms in 
equations (9) and (10) as expressions (14) and (15), respectively, is as follows. 
The finite-difference term marked with the numeral I corresponds to 
the differential analogue of horizontal advection. In the finite-difference equation 
for velocity vorticity, it ensures conservation of discrete energy; however, vorticity 
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and enstrophy are not invariants. The term marked with the numeral II is of fourth-
order smallness and therefore does not change the order of the finite-difference 
scheme. However, its presence in expressions (14) and (15) ensures that 
the discrete equation for velocity vorticity in non-divergent flow satisfies 
the conservation laws for vorticity, energy and enstrophy [2]. 

The third term of second-order smallness is fundamentally different from 
the other two. While the first two can be interpreted as approximations of νξ z , 
the third term does not formally correspond to any component. It emerges as 
a consequence of conservativity being required in the discrete vorticity equation, 
which, along with the first term, ensures the conservation of energy and potential 
enstrophy in the shallow water model (divergent motion in the (x, y) plane) [3]. 

Based on these considerations, the equations of motion in the shallow water 
approximation can be expressed as follows: 

 

1/2,
1/2, 1/2, 1/2, 1/2, 1/2,( )

x
xyyi j z x

i j i j x i j i j i j

du
v E

dt
+

+ + + + +− ξ = −δ η + +Φ ,            (16) 
 

, 1/2
, 1/2 , 1/2 , 1/2 , 1/2 , 1/2( )

y
xyxi j z y

i j i j y i j i j i j

dv
u E

dt
+

+ + + + ++ ξ = −δ η + +Φ ,           (17) 
 

where ,i jη  is the elevation of the free surface. The 1/2, , 1/2,x y
i j i j+ +Φ Φ  form is obvious in 

equations (16) and (17). 
Two conclusions can be drawn from the above. Firstly, constructing finite-

difference schemes with the required conservation properties may involve selecting 
suitable expressions of ,x yΦ Φ

 
type, which do not change the order of the problem 

and can be interpreted as approximating zero with the corresponding order. 
Secondly, equations (16) and (17) can be expressed using tensor analysis: 

( )n
n n n n n

d
h E

dt
α

α α α α α

α α
β αβ

αβγ β γ α αυ
− ε υ ξ = −δ + +Φ ,                       (18) 

 

where α, β, γ can only take distinct values of x, y, z simultaneously. 
Expressions for 

nα
αΦ  will be provided later. 

The following notations are introduced: 1/2, , , 1/2, 1/2, 1/2,( , , ) ( , , )x y z
x y z

i j k i j k i j kn n n
u v w+ + + +υ υ υ = , 

where , ,x y zn n n correspond to the points (i+1/2, j, k), (i, j+1/2, k), (i, j, k+1/2).  
Setting α = x in equation (18) yields equation (16), while setting α = y yields 

equation (17). In other words, swapping α and β gives us system (16), (17).  
Taking the introduced notations into account, we can write equations (9)–(11) as 

a single equation: 

n
n n n n

d
dt

α

α α α α

α α α
β αβ γ αγ

αβγ β γ αγβ γ βυ
− ε υ ξ − ε υ ξ = ( ) .

n n n n
E P gα α α α

α
α−δ + + ρ +Φ

     (19) 
 

If we set , ,x y zα = β = γ =  in equation (19), we obtain: 
 

1/2, ,
1/2, , 1/2, , 1/2, , 1/2, ,

x x
xy z xzyi j k z y

i j k i j k i j k i j k

du
v w

dt
+

+ + + +− ξ + ξ =  
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1/2, , 1/2, , 1/2, ,( ) x
x i j k i j k i j kE P+ + += −δ + +Φ ,                                                         (20) 

at , ,y x zα = β = γ =  

, 1/2,
, 1/2, , 1/2, , 1/2, 1/2, ,

y y
xy z yzxi j k z x

i j k i j k i j k i j k

dv
u w

dt
+

+ + + ++ ξ − ξ =  

, 1/2, , 1/2, , 1/2,( ) y
y i j k i j k i j kE P+ + += −δ + +Φ ,                                             (21) 

at , ,z y xα = β = γ =  
, , 1/2

, , 1/2 , , 1/2 , , 1/2 , , 1/2

z zi j k x xz y yz
y x

i j k i j k i j k i j k

dw
u v

dt

+

+ + + +− ξ + ξ =  

, , 1/2 , , 1/2 , , 1/2 , , 1/2( ) z
z i j k i j k i j k i j kE P g+ + + += −δ + + ρ +Φ .                           (22) 

 

Let us examine the last term in equation (19). We represent it in the form: 

1 2 3
α α α α
αΦ = Φ +Φ +Φ
n n n n

 .                                      (23) 
 

Then, in accordance with expressions (14) and (15), the terms in equality (23) 
can be written as follows: 

2 2
1 ( )( ) ,

48n n n

h h
α α α

α βαβγ β γ
α β α β Φ = ε δ δ υ δ δ ξ   

 

2 [ ( )],
6n n n

h h
α α α

α αα βαβγ α γ
α βΦ = −ε δ υ δ ξ                                   (24) 

 

3 [ ].
12n n n

h h
α α

αα βαβγ α γ
α βΦ = ε υ δ δ ξ  

Note that, from this point onwards, summation is performed for a fixed α 
over two permutations: β, γ and γ, β. Therefore, taking expression (24) into 
account, equations (21) and (22) can be written as a single equation: 

 
 

I
II

( )
12

n
n n n n n n n

d h h
E P g

dt
α

α α α α α α α

α α
β αβ αα βαβγ β γ αβγ α γ

α α β

υ  −ε υ ξ + δ + − ρ = ε υ δ δ ξ +  






 

2 2

III

( )( ) 2 ( ) .
48 n n n n

h h
α α α α

α αα βαβγ β γ α γ
α β α β α β

 +ε δ δ υ δ δ ξ − δ υ δ ξ 
 



                            (25) 

 

The discrete equation (25) possesses the following features. Term I is a discrete 
analogue of the nonlinear term in the equation of motion. In the shallow water 
approximation, it satisfies the energy conservation law, but does not guarantee 
the conservation of potential enstrophy (the second quadratic invariant). Adding 
the term marked as II yields a scheme that provides two discrete invariants: energy and 
enstrophy (squared vorticity) for non-divergent flow. However, the property of 
potential enstrophy conservation in the shallow water approximation is still absent. 
Finally, term III yields the Arakawa–Lamb scheme [3]. 
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Although the right-hand side does not formally correspond to the differential 
form of equation (1), yet it does not alter the order of the scheme and can be 
interpreted as a second-order accurate spatial approximation of zero. 

In the specified notation, the absolute velocity vorticity (12) can be rewritten 
as a finite-difference analogue of (3):  

 

α α
α αβγ γ α

βξ ε δ .
n n

fυ= +                                            (26) 
 

By performing the appropriate operations, we obtain a differential-difference 
(time-differential) equation for absolute velocity vorticity (a discrete analogue of 
equation (7): 

 

ξ
δ , δ , =g ( ) ( ) .

2
n

n n n n n n n

d
dt

α

β α α γ α γ β

α αβγ
β α α γ α γ β

β γ β γ

ε     + υ ξ − υ ξ ϑ − δ Φ − δ Φ     


      (27) 

 
Quasi-static approximation 

Let us consider a special case of motion in the quasi-static approximation, 
taking into account the boundary conditions (6) and initial conditions. In this case,  

 

ξ ξ ξ ,x y z zv u v u= - , = , = - + f
z z x y
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂    

2 2

0ρ .
2

u vE +
=

   
(28)

 
 

The continuity equation retains its original form (2).  
Note that we assume 3

0ρ 1 / .g cm=  
In accordance with the C-grid (Fig. 1), the finite-difference analogues of 

velocity vorticity (26) in the form (28), as well as the kinetic energy, can be written 
as follows: 

 
 

, 1/2, 1/2 , 1/2, 1/2- (v ),x
i j k z i j k+ + + +ξ = δ    1/2, , 1/2 1/2, , 1/2( ),y

i j k z i j ku+ + + +ξ = δ                  (29) 
 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2( ) ( ) .z z
i j k x i j k y i j k jv u f+ + + + + + +ξ = δ − δ +  

 

2 2
, , , ,

, ,

v
.

2

x y

i j k i j k
i j k

u
E

+
=  

 

The discrete equation of motion (25), with α = x, β = y, γ = z and α = y, β = x, 
γ = z, leads to the system of equations (20) and (21), where the components of 
absolute vorticity take the form (29). 

Let us rewrite the obtained equations as follows: 

1/2, , 1
1/2, ,1/2, , 1/2, , 1/2, / 1/2, ,( , ) ( ) ( ),

z
xi j k u y k k
i j ki j k i j k z z x i j k i j k

du
N u v w h h E P

dt
+ −

++ + + +

 
+ + ξ = −δ + 

 
 (30) 

 

, 1/2, 1
, 1/2,, 1/2, , 1/2, , 1/2, , 1/2,( , ) ( ) ( ).

z
yi j k v x k k
i j ki j k i j k z z y i j k i j k

dv
N u v w h h E P

dt
+ −

++ + + +

 
+ − ξ = −δ + 

 
 (31) 
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To describe vertical advection, we selected a scheme based on a minimal 
difference stencil to ensure energy conservation in the equations of motion. This is 
a special case of the scheme presented in equations (21)–(24). The horizontal 
advective terms in equations (30) and (31) can be verified to have the following 
form: 

 

1 2 3
1/2, , 1, 1/2, 1, 1/2, 1, 1/2, 1, 1/2, , 1/2, , 1/2,( , ) (u

i j k i j k i j k i j k i j k i j k i j kN u v v v v+ + + + + + − + − + += − α + α + α +  

             
4 5 6
, 1/2, , 1/2, 3/2, , 3/2, , 1/2, , 1/2, /) ,i j k i j k i j k i j k i j k i j kv u u− − + + − −+α + α −α                     

 

1 2 3
, 1/2, 1/2, 1, 1/2, 1, 1/2, 1, 1/2, 1, 1/2, , 1/2, ,( , )v

i j k i j k i j k i j k i j K i j k i j kN u v u u u+ + + + + − + − + + += β +β +β +  
4 5 6

1/2, , 1/2, , , 3/2, , 3/2, , 1/2, , 1/2,) ,i j k i j k i j k i j k i j k i j ku v v− − + + − −+β −β +β                                          (32) 
where  

3/2, 1/2, 3/2, 1/2, 1/2, 1/2, 1/2, 1/2,

1
1, 1/2,

1 (2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − + + + −+ +α = ξ + ξ + ξ + ξ  

3/2, 1/2, 3/2, 1/2, 1/2, 1/2, 1/2, 1/2,

2
1, 1/2,

1 ( 2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − + + + −+ −α = ξ + ξ + ξ + ξ  

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

3
, 1/2,

1 ( 2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − − + − −+α = ξ + ξ + ξ + ξ  

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

4
, 1/2,

1 (2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − − + − −−α = ξ + ξ + ξ + ξ  

 

3/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

5
3/2, ,

1 ( ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − + + − −+α = ξ − ξ + ξ − ξ  

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

6
1/2, ,

1 ( ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − − + − −−α = ξ − ξ + ξ − ξ                 (33) 

 

1/2, 3/2, 1/2, 1/2, 1/2, 3/2, 1/2, 1/2,

1
1/2, 1,

1 (2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + + − + − ++ +β = ξ + ξ + ξ + ξ  

 

1/2, 3/2, 1/2, 1/2, 1/2, 3/2, 1/2, 1/2,

2
1/2, 1,

1 ( 2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + + − + − +− +β = ξ + ξ + ξ + ξ  

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

3
1/2, ,

1 ( 2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − − + − −−β = ξ + ξ + ξ + ξ  

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

4
1/2, ,

1 (2 2 ),
24 i j k i j k i j k i j k

z z z z
i j k + + + − − + − −−β = ξ + ξ + ξ + ξ  

 

1/2, 3/2, 1/2, 3/2, 1/2, 1/2, 1/2, 1/2,

5
, 3/2,

1 ( ),
24 i j k i j k i j k i j k

z z z z
i j k + + − + + + − ++β = ξ − ξ + ξ − ξ  

 

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

6
, 1/2,

1 ( ).
24 i j k i j k i j k i j k

z z z z
i j k + + − + + − − −−β = ξ − ξ + ξ − ξ  
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The equation for the vertical component of absolute velocity vorticity at 
the point 1 / 2, 1 / 2, 1 / 2i j k+ + +  is written as (α = z in the equation (27)): 

 

ξ δ [ ( , )] ([ ( , )]) δ ([ ,ξ ]) δ ([ ,ξ ]) 0.
z

u v x y
x y x y

d N u v N u v w w
dt

+ + δ − − =                (34) 
 

 
The form of the last two terms in equation (34) is clear. 
Approximation (32)–(34) corresponds exactly to the Arakawa–Lamb scheme. 

Therefore, in the shallow water approximation, equation (34) possesses two 
quadratic invariants: energy and potential enstrophy. When these two quadratic 
conservation laws are satisfied, the mean wavenumber remains time-independent. 
This consequently prevents systematic energy transfer to motions with high 
wavenumbers, thereby enhancing the stability of the numerical solution. 

The formulation obtained in equations (25) and (27) enables us to derive 
analogous schemes for the other two velocity vorticity components. 

 
Conclusion 

This paper presents the Arakawa–Lamb scheme as comprising three distinct 
terms that reflect the different properties of the discrete equations. The first term 
ensures energy conservation in the discrete formulation; the second leads to 
a scheme with two quadratic invariants for non-divergent flow; and the addition of 
the third term corresponds to the full Arakawa–Lamb scheme. A crucial feature of 
this representation is that the second and third terms are not directly analogous to 
any terms in the system of differential equations. Although they do not affect 
the order of approximation, they do significantly influence the properties of 
the scheme. As the grid spacing decreases, these terms tend towards zero and can 
therefore be interpreted as being equal to zero when expressed as a function 

2
, ,i j kh ϕ . Consequently, appropriate finite-difference approximations of the zero 

right-hand side can be selected to construct difference schemes with various 
conservation properties. As there is an infinite number of such variants, it is 
necessary to develop a formalism that can identify schemes with specific 
characteristics. 

The fundamental result is that the presented formulation enables the derivation 
of difference equations for the horizontal vorticity components, which, like 
the Arakawa–Lamb scheme, possess two quadratic invariants. 
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