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Abstract 
Purpose. The purpose of the study is to develop the model of impurity transport in the ocean – sea ice 
system based on the Lagrangian approach. 
Methods and Results. The Lagrangian transport of particles is considered in the approximation of 
a quasi-two-phase ocean – ice medium (particles are subject to the ice formation and melting processes, 
but actually remain in the ocean model). For the first time, the Lagrangian model over an arbitrary 
computational grid taking into account the quadratic correction of turbulent diffusion is described in 
detail. A synchronous model for the Lagrangian transport and the ocean – sea ice model (INMIO – 
CICE5.1) is constructed. The test calculations of particle transport in the field of a static vortex in 
the Cartesian and spherical coordinate systems demonstrate the correctness of the presented method. 
The results of the experiment on particle cloud transport in the Laptev Sea have shown both 
the fundamental possibilities of using the approach to solve applied problems and a good scalability of 
the model’s parallel implementation for a large (up to 106) number of particles. 
Conclusions. The model developed on the basis of the Eulerian and Lagrangian approaches, makes it 
possible to solve comprehensively the problems related to water circulation and spread of impurities of 
various types (radioactive and stable isotopes, soluble and insoluble elements of anthropogenic and 
natural origin, etc.) and, consequently, to assess their impact on the environment. 
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Introduction 
Two traditional approaches are conventionally used when solving 

hydrodynamic problems: the Eulerian approach and the Lagrangian approach. These 
methods are generally effective for different classes of problems and have a wide 
range of applications. They can also complement each other to provide a more 
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complete picture of processes occurring in the fluid. The Eulerian approach is mainly 
used when constructing most modern ocean circulation models and when describing 
the general dynamics of a continuous medium. By contrast, the Lagrangian approach 
involves tracking the trajectory of an infinitesimal fluid particle in the presence of 
specified forces. This makes it possible to evaluate the details of individual currents 
or specific structures (for example, surface and underwater currents, oceanic 
vortices) during the evolution of the internal state of the continuous medium. It also 
enables the evaluation of specific features of currents or particular structures (such 
as surface and subsurface currents, oceanic vortices, etc.) during the evolution of 
the continuum medium’s internal state. At the same time, various properties can be 
assigned to the particles, including characteristic of local biogenic and 
anthropogenic processes and real or hypothetical sources of pollution, including 
radioactive ones. This allows the dynamics of impurity propagation in a given 
current to be reconstructed. Since ocean dynamics modeling often considers water 
in two states (liquid and solid), the dynamic properties of which are fundamentally 
different, studying particle transport within both thermodynamic phases is of 
particular scientific interest. To the best of our knowledge, there are currently no 
publicly available models that consider such processes [1]. 

Combining Eulerian and Lagrangian approaches provides comprehensive 
solutions to problems involving water circulation and the dispersion of various types 
of impurities (radioactive and stable isotopes, soluble and insoluble elements of 
anthropogenic and natural origin). Consequently, it is possible to assess their 
environmental impact. This tool is particularly relevant due to the development of 
the Northern Sea Route 1 and the Arctic region 2 as a whole in terms of logistical and 
military-political potential. Floating nuclear power plants are already being actively 
utilized during the development of resources in the Arctic Ocean (AO). Due to various 
risk factors, a detailed study of their environmental impact is necessary [2]. Particular 
attention should be given to potential emergency situations involving the release of 
radioactive isotopes into the AO waters. Research is required to assess the long-term 
consequences of such an event [3]. A tool based on a coupled Lagrangian-Eulerian 
ocean model would be optimally suited to solving these problems. In this context, 
developing such a tool using domestic software platforms is particularly relevant 3. 

When developing coupled Lagrangian-Eulerian models, particles are typically 
treated as passive tracers that do not affect the properties of the carrying flow. In 
such configurations, the Eulerian model is primary in the sense that the accuracy and 
reliability of the calculated velocity field determine the predictability of particle 
transport. The Eulerian ocean dynamics model involves the numerical solution of 

1  Government of the Russian Federation, 2019. [Northern Sea Route Infrastructure Development 
Plan until 2035 (Order No. 3120-r of December 21, 2019). Collected Legislation of the Russian 
Federation]. No. 52 (Part V), Article 8053 (in Russian). 

2  Government of the Russian Federation, 2021. [Socio-Economic Development of the Arctic Zone 
of the Russian Federation. Resolution of the Government of the Russian Federation No. 484, 30 March. 
Collected Legislation of the Russian Federation]. No. 14, Article 2411 (in Russian). 

3 Government of the Russian Federation, 2023. [Concept of Technological Development until 2030. 
Order of the Government of the Russian Federation No. 1315-r, 20 May, Moscow] (in Russian). 
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the full set of fluid dynamics equations for a specified body of water with a defined 
spatial resolution, as well as the parameterization of internal and boundary processes. 
Coupling this approach with ice and/or atmospheric models demonstrates its high 
effectiveness in forecasting regional and global climate dynamics [4–10]. 
Combining such models with Lagrangian transport modeling is the most appropriate 
approach, as evidenced by the numerous existing implementations reviewed in [1]. 

There are two subclasses of numerical models that support Lagrangian particle 
transport: autonomous and synchronous. In the former, the Eulerian and Lagrangian 
models run independently of each other (usually sequentially). The velocity field 
obtained from the first model is then used in the second model. Examples of the first 
subclass include TRACMASS [11], Ariane [12], CMS [13], and the SibCIOM-based 
Lagrangian model [14]. In the second subclass, the modeling of fluid dynamics and 
particles is carried out synchronously. The complete set of current data for the entire 
computational domain is used in the Lagrangian model at each time step, providing 
the maximum possible temporal resolution. Examples of implementations can be 
found in the MRI.COM 4, NEMO 5, HYCOM [15], ROMS [16], and MITgcm [17] 
models. 

Compared to synchronous models, autonomous models have several 
disadvantages. Specifically, three-dimensional velocity fields are always time-
averaged (and sometimes spatially averaged), which reduces the accuracy with 
which dynamic processes can be described [1]. Storing current data in four-
dimensional arrays requires substantial disk space. This limits the ability to study 
temporally extended and spatially detailed processes. Secondly, reading data from 
external storage is a relatively slow process that significantly impacts post-
processing performance and the computational efficiency of the autonomous model. 
While synchronous models offer many advantages, they also have certain 
drawbacks, including placing an additional load on high-performance computing 
system resources and making implementation somewhat more complex. 

The aim of this work is to develop and implement a Lagrangian transport model 
within the INMIO ocean dynamics model [18], which forms part of the integrated 
ocean – ice – atmosphere – land modeling system [5, 6, 9, 19]. The Lagrangian 
particle transport model must have the following features: synchronous execution 
with the ocean dynamics model, incorporation of two-phase transport capability for 
ocean – ice system simulations, enabling of particle injection at specified 
coordinates and times, support for particle classification into groups based on 
individual properties (including lifetime duration, buoyancy characteristics, and 
bottom adhesion conditions), a total number of particles of up to 106. 

4 Sakamoto, K., Nakano, H., Urakawa, S., Toyoda, T., Kawakami, Y., Tsujino, H. and Yamanaka, 
G., 2023. Reference Manual for the Meteorological Research Institute Community Ocean Model 
Version 5 (MRI.COMv5). MRI, 334 p. (Technical Reports of the Meteorological Research Institute; 
No. 87). 

5 Madec, G. and the NEMO Team, 2016. NEMO Ocean Engine: Technical Report. 300 p. (Note 
du Pôle de Modélisation de l'Institut Pierre-Simon Laplace; No. 27). 
https://doi.org/10.5281/ZENODO.3248739 
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Data and methods 
Coupled ocean – ice model. The implementation of a synchronous Lagrangian 

transport model depends directly on the ‘parent’ Eulerian model and its specific 
architecture. This study focuses on developing a particle transport model for a two-
phase medium, representing aspects that are particularly important from 
the standpoint of the Lagrangian model for implementing both components in 
the ocean – ice modeling system. 

The basic ocean model of the joint modeling complex is represented by 
the INMIO numerical model of ocean dynamics [18]. This model belongs to the 3D 
PEM (3-Dimensional Primitive Equation Models) class. It is based on the classical 
system of Reynolds equations under the Boussinesq, hydrostatic and incompressible 
fluid approximations. The free boundary of the atmosphere – ocean interface is 
described by a nonlinear kinematic condition that explicitly describes the flows of 
water, heat, salt and momentum. At rigid boundaries, the free-slip condition and zero 
heat and salinity flow are specified. 

F i g.  1. Calculation grid in the INMIO model: scheme of the arrangement of grid nodes in 
the horizontal (a) and vertical (b) planes 

The original differential equations are approximated using the finite volume 
method on a B-type horizontal grid (Fig. 1), which uses z-coordinates in the vertical 
dimension and an arbitrary orthogonal coordinate system in the horizontal plane. 
Currently, Cartesian, spherical and tripolar coordinate systems are supported. 
The numerical model is optimized for parallel execution on high-performance 
computing systems via two-dimensional domain decomposition. 

The coupled ocean – ice model incorporates sea ice dynamics via the CICE5.1 
model 6. It characterizes the state of ice and snow using a distribution function 

6 Hunke, E.C. and Lipscomb, W.H., 2013. CICE: The Los Alamos Sea Ice Model Documentation 
and Software User’s Manual Version 5.1. LA-CC-06-012. Los Alamos National Laboratory, 115 p. 
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g (t, x, h) that depends on time, geographical coordinates and ice thickness. 
The primary prognostic variables include ice concentration, averaged thickness 
values, the internal energy of ice and snow, ice salinity, temperature, and the ice 
velocity vector. The original thermodynamic and ice transport equations are 
approximated using the finite difference method on a B-type grid in Cartesian, polar 
or tripolar coordinate systems at the ocean surface. 

The coupled ocean – ice modeling system has been implemented using 
the compact computational platform CMF3.0 [5]. In addition to centralized and 
parallel input/output operations, CMF3.0 integrates multiple models into a unified 
geophysical modeling system by reinterpolating the components participating in 
modeling onto different grids. 

Based on the abovementioned information, more detailed requirements for 
implementing the Lagrangian model can be formulated. The implementation must 
support centralized input/output with specified discretization through CMF3.0 
procedures. As the formulation of the ocean – ice system does not include 
the transport of particles into the atmosphere, it is sufficient to implement support 
for Lagrangian transport in the ocean model, ensuring the reinterpolation of 
the velocity field and the ice formation/melting potential from the ice model using 
the compact computational platform’s method. Finally, as the INMIO model is 
defined in an arbitrary orthogonal coordinate system, the Lagrangian model must 
support particle transport in any coordinate system. 

Taking these requirements into account, the procedure for calculating 
the trajectories of Lagrangian particles in the ocean model can be represented as two 
fundamental operations: the interpolation of the discrete velocity field to an arbitrary 
coordinate point (particle coordinates) within a specific coordinate system; and 
the integration of the equation describing the motion of the particles in the given 
current field. 

The model of Lagrangian particle transport. As mentioned in 
the introduction, from a practical standpoint, it is interesting to track not only 
the movement of water, but also that of dissolved trace elements in the ocean, such 
as radionuclides, nutrients, plankton and minerals. However, it is insufficient to 
simply compute the displacement of fluid particles under the influence of a given 
velocity field, since the mass of dissolved material in a given volume is generally 
not constant due to turbulent mixing. As small-scale processes are difficult to 
describe within the framework of a general ocean circulation model, the mixing 
effect must be represented directly in the Lagrangian model as particle transport 
under the influence of diffusion [1]. Thus, the Lagrangian model accounts for 
the transport of a fluid particle with fixed physical properties within a given velocity 
field, taking into account the effects of turbulent mixing. The concentration of 
dissolved material can then be determined by counting the number of particles in 
a given volume. This approach was first introduced in [20] and has since become 
standard practice for modeling dissolved substance transport [1]. 

Since turbulent mixing processes are random by nature and liquid particle 
transport and diffusion are assumed to be linearly independent processes, stochastic 
differential equations can be used to model Lagrangian transport. In general, this 
equation is represented by formula (1). This is a stochastic differential equation, 
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which is a special case of the Langevin equation. The additional term in this equation 
describes the random fluctuations of a particle caused by turbulent processes [21]:  

𝑑𝑑�⃗�𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐴𝐴(�⃗�𝑥, 𝑡𝑡) + 𝐵𝐵(�⃗�𝑥, 𝑡𝑡)𝐿𝐿�⃗ (𝑡𝑡),            (1) 

where �⃗�𝑥(𝑡𝑡) = �𝑥𝑥𝑙𝑙(𝑡𝑡),𝑦𝑦𝑙𝑙(𝑡𝑡), 𝑧𝑧𝑙𝑙(𝑡𝑡)� are the coordinates of a particle in a given space; 

𝐴𝐴(�⃗�𝑥, 𝑡𝑡) is a vector representing a deterministic force field that governs the evolution 
of �⃗�𝑥(𝑡𝑡); 𝐵𝐵(�⃗�𝑥, 𝑡𝑡) is a predefined tensor that characterizes the stochastic influence on 
the particle (in this case, turbulence); 𝐿𝐿�⃗ (𝑡𝑡) is a random vector representing 
the chaotic nature of these influences (turbulent diffusion). The components of 𝐿𝐿�⃗ (𝑡𝑡) 
are independent random variables with zero expected mean. 

Particle displacement under the effect of turbulent diffusion effect can be 
represented as a Markov process, in which predicting the subsequent position of 
the particle requires only information about its current state. Random fluctuations in 
this process are described by a Wiener process, which is a function of a normally 
distributed random variable with zero expected mean and dispersion – dt. 
The relation between equation (1) and the advection-diffusion equation is 
demonstrated through the Kolmogorov forward equation (or Fokker–Planck 
equation) in works 7 [1]. According to work 6, the Lagrangian particle transport 
equation along the three coordinate axes can then be expressed as follows: 

𝑑𝑑𝑥𝑥𝑙𝑙(𝑡𝑡) = 𝑢𝑢(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜕𝜕𝐾𝐾𝑥𝑥(�⃗�𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑡𝑡 + ξ𝑥𝑥�2𝐾𝐾𝑥𝑥(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,

𝑑𝑑𝑦𝑦𝑙𝑙(𝑡𝑡) = 𝑣𝑣(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜕𝜕𝐾𝐾𝑦𝑦(�⃗�𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑡𝑡 + ξ𝜕𝜕�2𝐾𝐾𝜕𝜕(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,

𝑑𝑑𝑧𝑧𝑙𝑙(𝑡𝑡) = 𝑤𝑤(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜕𝜕𝐾𝐾𝑧𝑧(�⃗�𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑡𝑡 + ξ𝜕𝜕�2𝐾𝐾𝜕𝜕(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,

          (2) 

where u, v, w are velocity vector components; Kx, Ky, Kz are turbulent diffusion 
coefficients; ξx, ξy, ξz are independent, normally distributed random variables with 
a zero mean and unit dispersion. Note that the second term on the right-hand side of 
equations (2) has been introduced artificially to compensate for the unrealistic 
particle accumulation in regions of low diffusivity 6 [23, 24], ensuring that turbulent 
diffusion processes are modelled correctly within the framework of the advection-
diffusion equation. 

We introduced several modifications to the aforementioned Lagrangian particle 
transport model to optimize it for the processes of interest. Firstly, in the context of 
an eddy-resolving ocean model, the effects of horizontal turbulent diffusion can be 
disregarded, as advective processes largely dominate weak horizontal plane 
fluctuations 6. Secondly, studies 8 [24] suggest that the vertical turbulent diffusion 
term, which is responsible for random fluctuations, should be adjusted to second-

7 Wolk, F., 2003. Three-Dimensional Lagrangian Tracer Modelling in Wadden Sea Areas: 
Diploma Thesis. Hamburg, Germany: Carl von Ossietzky University Oldenburg, 77 p. 

8 Ermak, D.L., Nasstrom, J.S. and Taylor, A.G., 1995. Implementation of a Random Displacement 
Method (RDM) in the ADPIC Model Framework. Lawrence Livermore National Laboratory, 16 p. 
(Report UCRL-ID-121742). https://doi.org/10.2172/103520 
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order accuracy. This improves the representation of diffusive processes in 
the bottom boundary layer, where Kz approaches zero. Thirdly, in practice, 
the presence of dissolved substances in a given volume alters the density of 
the solution. In most cases, however, this can be disregarded. In certain applications, 
particularly those involving long-term simulations or significant concentrations of 
passive tracers (such as sediment transport studies 6), the effect of buoyancy 
variation may become non-negligible. To account for this, an additional term has 
been introduced into the third equation (2) to describe particle motion along 
the vertical axis at a constant velocity ws, reflecting this process in the first-order 
approximation. Considering all these modifications, the final system of Lagrangian 
particle transport equations takes the following form: 

𝑑𝑑𝑥𝑥𝑙𝑙(𝑡𝑡) = 𝑢𝑢o(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,
𝑑𝑑𝑦𝑦𝑙𝑙(𝑡𝑡) = 𝑣𝑣o(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,

𝑑𝑑𝑧𝑧𝑙𝑙(𝑡𝑡) = (𝑤𝑤o(�⃗�𝑥, 𝑡𝑡) + 𝑤𝑤𝑠𝑠)𝑑𝑑𝑡𝑡 +
𝜕𝜕𝐾𝐾𝜕𝜕(�⃗�𝑥, 𝑡𝑡)

𝜕𝜕𝑧𝑧
𝑑𝑑𝑡𝑡 +

+ξ𝜕𝜕�2𝐾𝐾𝜕𝜕(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡 + �𝜕𝜕𝐾𝐾𝑧𝑧(�⃗�𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑡𝑡�
2

,             (3) 

where uo, vo, wo are components of the fluid velocity vector at a given coordinate 
point. 

According to [1], it is particularly noteworthy that there are currently no publicly 
available implementations of synchronous Lagrangian-Eulerian ocean models that 
can compute particle trajectories based on stochastic differential equations, explicitly 
accounting for turbulent diffusion. Furthermore, we have been unable to find ocean 
circulation models that support Lagrangian particle transport in this formulation. 
In this respect, the particle transport functionality in the INMIO model is unique. 

Equations of the form (3) only apply to particle transport in a liquid ocean 
environment where turbulent diffusion is caused by mesoscale vortex processes. 
However, if a particle becomes trapped in an ice cover, turbulent mixing is absent. 
In this case, particles move along the ice velocity vector. This motion can be 
described by a simple Lagrangian transport equation: 

𝑑𝑑𝑥𝑥(𝑡𝑡) = 𝑢𝑢𝑖𝑖(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,
𝑑𝑑𝑦𝑦(𝑡𝑡) = 𝑣𝑣𝑖𝑖(�⃗�𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡,
𝑑𝑑𝑧𝑧(𝑡𝑡) = 0,

          (4) 

where ui, vi are the horizontal components of the ice velocity. Since our model does 
not consider particle transport processes beyond the ocean surface, vertical particle 
movement in the ice cover can be disregarded. The transition between oceanic and 
ice-bound transport modes occurs when particles cross the ice-ocean interface, 
which requires special treatment in numerical implementations to ensure 
the conservation of particle properties. In this case, the moment at which particles 
transition into and out of a frozen state can be estimated using a probabilistic 
approach based on the intensity of ice formation and melting processes. 

As noted earlier, the ocean – ice modeling system comprises two models that 
are managed by the compact computational platform CMF3.0. This enables each 
model to obtain the necessary information from the other with a specified 
discreteness. Within the framework of Lagrangian transport in a two-phase 
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environment, our focus is on the ice velocity field, as well as on the potential for ice 
formation and melting. The first quantity will obviously be used directly in equations 
(4) to calculate particle displacement. The second quantity, the ice formation and 
melting potential, determines the procedures in the ice model for forming frozen 
structures on the ocean surface. When this quantity is positive, it indicates that 
the water temperature has fallen below the freezing point. This leads to the formation 
of ice proportional to the magnitude of the potential, and the subsequent 
accumulation of ice crystals on the surface, gradually forming an ice cover. Negative 
potential values correspond to melting processes. In dimensionless form, this 
parameter enables the approximate estimation of the probability of a Lagrangian 
particle freezing or thawing if it is located in the ocean surface layer: 

𝑃𝑃(�⃗�𝑥, 𝑡𝑡) = �1 − 𝑇𝑇o(�⃗�𝑥,𝑡𝑡)
𝑇𝑇𝑓𝑓(�⃗�𝑥,𝑡𝑡)

�,             (5) 

where To is the fluid temperature at the current coordinates of the Lagrangian 
particle; 𝑇𝑇𝑓𝑓 is the freezing temperature at that point; formula (5) defines 
the probability function for particle freezing if it is located in the surface layer when 
To < 𝑇𝑇𝑓𝑓, as well as the probability function for particle thawing if it was already 
frozen when To ≥ 𝑇𝑇𝑓𝑓. 

Thus, the general model of Lagrangian transport in the quasi-two-phase ocean 
– ice environment can be represented as follows:

1. If the particle is in a frozen state, its movement is described by equations (4)
and the probability of thawing is determined by function (5) when To ≥ 𝑇𝑇𝑓𝑓. 

2. Otherwise, the particle moves freely in the liquid phase according to
equations (3) and may freeze with a probability (5) if located in the surface layer of 
the fluid (in the uppermost grid cell of the numerical model) when To <  𝑇𝑇𝑓𝑓. 

This approach enables the model to be implemented without the need to transfer 
particle information to the ice model. This significantly reduces the number of 
computational resources required and simplifies the program code simultaneously.  

For the numerical integration of the equations describing the transport of 
Lagrangian particles, the explicit Euler scheme or Runge–Kutta schemes [1] of 
various orders of accuracy are typically used. In the autonomous implementation of 
coupled models, when temporal discretization of the velocity field is relatively 
coarse, higher-order time approximation schemes are employed to enhance 
the accuracy of particle trajectory reconstruction in the original equations (3) and 
(4). In such cases, methods such as Heun scheme and fourth-order (or higher) 
Runge–Kutta schemes 6 are commonly applied [1, 25]. 

In coupled models, the requirement for high-order temporal schemes becomes 
less critical, enabling the use of the first-order accurate Euler scheme. The accuracy 
of the numerical integration of the original equations can be adjusted by reducing 
the time step in the numerical implementation of the Lagrangian model. Numerical 
tests of particle transport in a static circular current field demonstrate that, regardless 
of the numerical scheme used (Euler or Runge–Kutta), the integration time step in 
the Lagrangian transport model must be significantly smaller than in the ocean 
model to achieve acceptable accuracy in reconstructing circular particle trajectories 
[1]. Thus, the finite-difference scheme for the original Lagrangian particle transport 
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equations in the velocity field of the coupled ocean – ice modeling system can be 
expressed as follows: 

𝑥𝑥𝑛𝑛+1𝑙𝑙 = 𝑥𝑥𝑛𝑛𝑙𝑙 + �
𝑢𝑢o(𝑥𝑥𝑛𝑛����⃗ )Δ𝑡𝑡𝑙𝑙 , 𝑠𝑠 = ocean,
𝑢𝑢𝑖𝑖(𝑥𝑥𝑛𝑛����⃗ )Δ𝑡𝑡𝑙𝑙 , 𝑠𝑠 = ice,

 

𝑦𝑦𝑛𝑛+1𝑙𝑙 = 𝑦𝑦𝑛𝑛𝑙𝑙 + �
𝑣𝑣o(𝑥𝑥𝑛𝑛����⃗ )Δ𝑡𝑡𝑙𝑙 , 𝑠𝑠 =  ocean,
𝑣𝑣𝑖𝑖(𝑥𝑥𝑛𝑛����⃗ )Δ𝑡𝑡𝑙𝑙 , 𝑠𝑠 = ice,

 

𝑧𝑧𝑛𝑛+1𝑙𝑙 = 𝑧𝑧𝑛𝑛𝑙𝑙 +�
(𝑤𝑤o(𝑥𝑥𝑛𝑛����⃗ ) + 𝑤𝑤𝑠𝑠)Δ𝑡𝑡𝑙𝑙 + Δ𝐾𝐾𝑧𝑧(𝑥𝑥𝑛𝑛�����⃗ )

Δ𝜕𝜕(𝑥𝑥𝑛𝑛�����⃗ ) Δ𝑡𝑡
𝑙𝑙 +

0,
      (6) 

+�𝜉𝜉𝜕𝜕�2𝐾𝐾𝜕𝜕(𝑥𝑥𝑛𝑛����⃗ )Δ𝑡𝑡𝑙𝑙 + �
Δ𝐾𝐾𝜕𝜕(𝑥𝑥𝑛𝑛����⃗ )
Δ𝑧𝑧(𝑥𝑥𝑛𝑛����⃗ ) Δ𝑡𝑡𝑙𝑙�

2

, 𝑠𝑠 = ocean,

0 𝑠𝑠 = ice,

 

𝑃𝑃𝑛𝑛(𝑠𝑠 = ice) = 1 −
𝑇𝑇o(𝑥𝑥𝑛𝑛����⃗ )
𝑇𝑇𝑓𝑓(𝑥𝑥𝑛𝑛����⃗ ) , 𝑠𝑠 = ocean,𝑇𝑇o ≤ 𝑇𝑇𝑓𝑓 , 𝑧𝑧𝑛𝑛𝑙𝑙 < 𝑧𝑧2, 

𝑃𝑃𝑛𝑛(𝑠𝑠 = ocean) =
𝑇𝑇o(𝑥𝑥𝑛𝑛����⃗ )
𝑇𝑇𝑓𝑓(𝑥𝑥𝑛𝑛����⃗ ) − 1, 𝑠𝑠 = ice,𝑇𝑇o > 𝑇𝑇𝑓𝑓 , 

Δ𝑡𝑡𝑙𝑙 = Δ 𝑡𝑡o 𝑝𝑝⁄ , 
where 𝑥𝑥𝑛𝑛����⃗ = {𝑥𝑥𝑛𝑛𝑙𝑙 ,𝑦𝑦𝑛𝑛𝑙𝑙 , 𝑧𝑧𝑛𝑛𝑙𝑙 } is the Lagrangian particle coordinate at the n-th integration 
step; 𝑢𝑢o����⃗ = {𝑢𝑢o(𝑥𝑥𝑛𝑛����⃗ ), 𝑣𝑣o(𝑥𝑥𝑛𝑛����⃗ ),𝑤𝑤o(𝑥𝑥𝑛𝑛����⃗ )} is current velocity at the point with particle 
coordinates; 𝑢𝑢𝚤𝚤���⃗ = �𝑢𝑢𝑖𝑖(𝑥𝑥𝑛𝑛����⃗ ), 𝑣𝑣𝑖𝑖(𝑥𝑥𝑛𝑛����⃗ ), 0� is ice movement velocity; Δtl is the time step 
in the Lagrangian model; Δto is the time step in the ocean model; p is the integer 
determining the refinement factor for the Lagrangian model integration order 
relative to the INMIO model. Test calculations demonstrate that acceptable solution 
accuracy is achieved at p ~ 10. 

Interpolation in the Lagrangian particle transport model. The Lagrangian 
transport modeling involves the movement of particles in a space of continuously 
defined coordinates (6). This means that, at any given moment, the coordinates of 
particles may not coincide with those of the grid nodes in the computational domain 
of the numerical model. Therefore, to achieve greater accuracy, the discrete velocity 
field of the ocean – ice system must be reconstructed within computational cells. 
This is typically accomplished using interpolation methods of various orders [1]. 
In this study, linear interpolation was chosen as it is the most computationally 
efficient approach while still providing acceptable accuracy [25]. 

However, applying this approach is complicated by the fact that the INMIO 
model equations are formulated in an arbitrary orthogonal coordinate system in 
the horizontal plane. In such a configuration, determining particle positions on 
the computational grid and performing interpolation becomes non-trivial. One 
solution to this problem, which preserves the simplicity of linear interpolation 
formulas, is to consider particle transport equations in logical (computational) space 
(Fig. 2) [25].  

PHYSICAL OCEANOGRAPHY   VOL. 32   ISS. 3   (2025) 380 



F i g.  2. Display of computational cells in different coordinate systems: Cartesian (a), polar (b), bipolar 
(c) and semi-logical (d) ones 

This space is a Cartesian coordinate system that arises naturally during 
the implementation of most numerical models. It is described by the indices of grid 
nodes. However, the transition to logical coordinates is only meaningful in 
the horizontal plane, since the INMIO model introduces z-coordinates in the vertical 
plane. In this new semi-logical space, �̄�𝐶 point coordinates can be represented as 
ξ⃗ = {ξ, η, 𝑧𝑧}, where ξ = i + α and η = j + β, and the mapping function from this space 
to physical space P takes the following form: 

τ�𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘 , ξ, η, 𝑧𝑧� = ∑ 𝑓𝑓𝑖𝑖+𝐼𝐼,𝑗𝑗+𝐽𝐽,𝑘𝑘+𝐾𝐾φ𝐼𝐼(α)ψ𝐽𝐽(β)χ𝑘𝑘+𝐾𝐾(𝑧𝑧)1
𝐼𝐼,𝐽𝐽,𝐾𝐾=0 ,

φ0(α) = (1 − α),φ1(α) = α,α ∈ [0,1],
ψ0(β) = (1 − β),ψ1(β) = β, β ∈ [0,1],

χ𝑘𝑘(𝑧𝑧) = 𝜕𝜕𝑘𝑘+1−𝜕𝜕
𝜕𝜕𝑘𝑘+1−𝜕𝜕𝑘𝑘

, χ𝑘𝑘+1(𝑧𝑧) = 𝜕𝜕−𝜕𝜕𝑘𝑘
𝜕𝜕𝑘𝑘+1−𝜕𝜕𝑘𝑘

, 𝑧𝑧 ∈ [𝑧𝑧𝑘𝑘 , 𝑧𝑧𝑘𝑘+1],

 (7) 

where i, j, k are indices of the computational grid cell; α, β are the real-valued 
displacements of a point in logical space relative to the cell index; fi, j, k is the function 
that defines the parameter values at the grid nodes in physical space; φ, ψ, χ are 
the basic mapping functions. When the function f specifies the coordinates of 
the grid cell nodes in physical space, expression (7) can be used to compute physical 
coordinates from given semi-logical coordinates. If f represents velocity vectors, 
expression (7) performs trilinear velocity interpolation within the specified grid cell 
(see Fig. 1). 
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However, when transitioning to semi-logical space, the particle motion vector 
should be rescaled according to the spatial deformation of the corresponding 
coordinate axes. Following [25], this rescaling can be implemented through 
the following transformation within the previously defined mapping framework: 

𝑢𝑢�⃗ = 𝐽𝐽 ⋅ ω��⃗ ,ω��⃗ = 𝐽𝐽−1 ⋅ 𝑢𝑢�⃗ ,

𝐽𝐽 = �𝜕𝜕�⃗�𝑥
𝜕𝜕ξ
� 𝜕𝜕�⃗�𝑥
𝜕𝜕η
� 𝜕𝜕�⃗�𝑥
𝜕𝜕𝜕𝜕
� ,       (8) 

where 𝑢𝑢�⃗ = {𝑢𝑢, 𝑣𝑣,𝑤𝑤} is the velocity vector in physical space; ω��⃗ = {�̄�𝑢, �̄�𝑣,𝑤𝑤} is 
the velocity vector in semi-logical space; J is the Jacobian matrix that defines 
the spatial deformation during transformation from physical to semi-logical 
coordinates. 

On a discrete grid, the Jacobian matrix J can be computed using finite 
differences. However, as demonstrated in [25], maximum accuracy requires these 
differences to be calculated for all nodes of the computational cell using both 
forward and backward finite difference schemes. This can be achieved using 
the mapping function τ(�⃗�𝑥, ξ, η, 𝑧𝑧) (7), which defines the transformation from semi-
logical to physical coordinates. It is straightforward to show that, in the third column 
and in the third row of the Jacobian matrix, all elements except the last one will be 
zero, since the given mapping does not affect the OZ axis. For each computational 
cell (i, j, k) the matrix will therefore take the form: 

𝐽𝐽𝑖𝑖,𝑗𝑗,𝑘𝑘 =

⎝

⎛

𝜕𝜕τ(𝑥𝑥)
𝜕𝜕α

𝜕𝜕τ(𝑥𝑥)
𝜕𝜕β

0
𝜕𝜕τ(𝜕𝜕)
𝜕𝜕α

𝜕𝜕τ(𝜕𝜕)
𝜕𝜕β

0
0 0 1⎠

⎞,         (9) 

where partial derivatives are calculated trivially for the mapping function τ(�⃗�𝑥, ξ, η, 𝑧𝑧) 
of form (7). 

Equations (6) remain invariant under the above mapping since the OZ 
dimension remains unchanged. To obtain the Lagrangian particle coordinates at 
the next time point, it is sufficient to scale the velocity vector at the cell nodes using 
formulas (8) and (9), interpolate it to the particle coordinates using formula (7), and 
then apply the semi-logical coordinates and resulting velocity vector directly to 
equations (6). 

Results and discussion 
Test calculations of particle transport in a static vortex field. As various 

aspects of the mathematical model presented above have been repeatedly verified in 
previous studies 6, 7 [1, 24], the primary objective of these test calculations is to 
demonstrate the correct implementation of the Lagrangian transport model and its 
integration methods on grids supported by the INMIO ocean model, in both 
Cartesian and geospheric/tripolar coordinate systems. 
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F i g.  3. Trajectories of particles moving in the static vortex field on a grid in the Cartesian coordinate 
system 

The INMIO software model was configured to simulate a geographical domain 
within the rectangle defined by the coordinates 53°–59°E and 68°–72°N. To test 
particle transport, an artificial velocity field representing a static vortex centered in 
the middle of the domain was introduced. The vortex had a rotation period of 
~ 10 days (angular velocity W = 7.27·10−6 rad/s). In the implementation of 
the Cartesian coordinate system, the linear velocity field was expressed in 
geographical units (degrees/seconds). In the spherical coordinate system, 
the velocity field dimensions corresponded to the metric system (m/s) and 
represented a vortex with the specified angular velocity centered on the Earth’s 
surface at the aforementioned geographical coordinates. The model was discretized 
using a 60 × 40 computational grid with a resolution of 0.1°. The ocean model time 
step was set to Δto = 6′. The temporal discretization of the Lagrangian model was 
varied to obtain the most accurate particle trajectories. As expected, the particle 
trajectories formed concentric streamlines for this preset velocity field. 
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The computation was performed in parallel mode using six cores. Fig. 3 presents 
the results of the Lagrangian particle transport test calculation on the Cartesian grid. 

As expected, the particles move synchronously in a circle along the streamlines 
specified in the computational domain of the vortex velocity field. It is obvious that 
particle transitions between grid cells and computational domains (indicated by thick 
lines in Fig. 3) do not distort their trajectories, and their motion in a vortex with 
a ~10-day period is reflected in the particle coordinates. The trajectories shown in 
Fig. 3 were obtained using p = 5 in expressions (6). 

F i g.  4. Trajectories of particles moving in the static vortex field on a grid in the geographic coordinate 
system 

In the next numerical test, the particles moved on a grid in a geographic 
coordinate system. 

Fig. 4 shows the results of calculations at various stages of the modeling 
process. As in the previous case, the particles move synchronously along 
the streamlines of the vortex velocity field. The trajectories remain circular in metric 
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space representation only. They no longer appear as circles in geographical 
coordinates, but instead manifest as elongated ellipsoidal curves elongated along 
the latitudinal axis. As before, the trajectories shown in Fig. 4 were obtained using 
p = 5 in equations (6). 

To obtain more accurate Lagrangian particle trajectories, special consideration 
must be given to particle transitions between computational cells, including transfers 
between subdomains in the two-dimensional decomposition of the ocean model’s 
computational domain. In the former instance, this is due to the peculiarities of 
modeling in semi-logarithmic space, where the velocity field at cell boundaries is no 
longer continuous (equations (7) and (8)). Therefore, to achieve maximum accuracy, 
the particle velocity and path should be recalculated when crossing cell boundaries. 
This requirement also applies when modeling in physical space, albeit for different 
reasons. In our implementation, this condition is only partially satisfied by using 
a time integration step (6) that is smaller than the ocean model time step. Conversely, 
‘seamless’ particle transfer between computational domains would indicate 
the correct implementation of the parallel computation algorithm for the Lagrangian 
model. 

F i g.  5. Particle trajectories in the test experiment on a grid in the geographic coordinate system 
(rectangle highlights the region on the boundary of computational cells and calculation domain) (a), 
enlarged image of the highlighted area (b) 

Fig. 5 shows, for example, particle trajectories crossing boundaries between two 
computational subdomains and several grid cells. As can be seen, the trajectories 
demonstrate no visible discontinuities. This indicates firstly that the required level 
of accuracy has been achieved for the specified Δtl (p = 5 in equations (6)) and 
secondly that the interprocessor particle exchange in the parallel Lagrangian 
transport model has been implemented correctly. 
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F i g.  6. Particle trajectories in the Laptev Sea current model (the study area is shown by a rectangle) 
(a), enlarged image of the indicated area (rectangle highlights the zone of interest) (b), enlarged 
image of the highlighted area (c) 

Test calculation of particle transport in the coupled ocean – ice model. 
The main purpose of this test calculation was to demonstrate the correct 
implementation of the above-described Lagrangian model within the ocean – ice 
modeling system consisting of the INMIO ocean model and the CICE5.1 ice 
thermodynamics model. The configuration of the ocean model for the AO was 
adopted from [6], but the Laptev Sea (71°–91°N, 120°–140°E) was chosen as 
the model domain because its waters are ice-covered for most of the year. The model 
bathymetry was interpolated from ETOPO5 9 data. Atmospheric forcing was 
specified according to the conditions of the international CORE-I experiment [26] 
as a normal annual cycle. The horizontal computational grid for the ocean and ice 
models was defined using a spherical coordinate system with 160 × 80 nodes 
horizontally and 49 vertical levels. Thus, the coupled ocean – ice model operated at 
a resolution of 0.125°. The integration step was set identically for the ocean and ice 
models at Δto = Δti = 5′. In the Lagrangian model, the integration step was set to 
Δtl = 1′, and particle coordinates were saved at the same frequency. Physical field 

9 National Oceanic and Atmospheric Administration (NOAA), 1988. Digital Relief of the Surface 
of the Earth. Data Announcement 88-MGG-02. National Geophysical Data Center, Boulder, Colorado. 
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data, including ice velocity fields, were synchronized every 10′ in the coupled 
ocean – ice system. The ocean – ice system took 1 year to setup; after this, 
the Lagrangian model was activated synchronously for an additional two model 
months for 104 particles initially located in the surface layer at 76°N, 130°E. 
The calculation was performed in parallel mode using 16 computational cores for 
the ocean model. 

F i g.  7. Graph of the dependence of one step duration (in seconds) in the Lagrangian model upon 
the core number in the experiment with uniform particle distribution in the simulated region 

Fig. 6, a displays horizontal trajectories of particles after two months of coupled 
numerical integration of the ocean – ice dynamics model and the Lagrangian 
transport model. As can be seen, the particles follow different trajectories under 
the effect of internal currents, as expected for a model incorporating turbulent 
mixing effects. Fig. 6, b presents an enlarged view of the trajectories of several 
particles within the rectangular area indicated in Fig. 6, a. The shapes of 
the trajectories reflect two primary dynamic processes: a quasi-uniform process in 
the selected region and circular motions corresponding to inertial oscillations in 
the current field. A further magnification (Fig. 6, c) reveals the synchronous 
horizontal movement of two nearby particles. 

To evaluate the scalability of the implementation of the Lagrangian transport 
model, we performed a series of numerical experiments involving 106 particles that 
were uniformly distributed over the surface of the domain that was simulated in these 
experiments (Fig. 7). As can be seen, the dependence of the time taken to calculate 
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one step in the Lagrangian transport model on the number of computing cores is 
almost linear, indicating good scalability of the parallel algorithm implemented for 
calculating the Lagrangian transport. However, it should be noted that this only holds 
true for the case of uniformly distributed particles, which rarely occurs in actual 
simulations. Under the influence of currents, particle concentrations within 
computational domains are not constant, but evolve over time. Consequently, 
the total computation time per integration step in the Lagrangian model is 
determined by the domain containing the maximum number of particles. 

Conclusion 
This study presents a Lagrangian particle transport model for the quasi-two-

phase ocean – ice medium that incorporates vertical turbulent mixing. This model 
has been implemented in the INMIO ocean general circulation model, which uses 
arbitrary horizontal coordinate systems. The model’s ability to support both two-
phase dynamics and turbulent diffusion is a unique feature among existing ocean 
dynamics models. This modeling tool is particularly relevant given the ongoing 
intensive development of the Arctic region. 

The model implementation supports the parallel computation of the transport of 
a large number of particles (up to 106) within the framework of a two-dimensional 
decomposition of the computational domain. For uniformly distributed Lagrangian 
particles, the algorithm demonstrates near-linear scalability. The particle trajectory 
calculations are performed on the computational cores of the ocean model, which 
determines the maximum number of particles. Otherwise, having more than 106 
particles concentrated in one computational domain will inevitably lead to an 
imbalance in the computational load, negatively affecting the model’s performance. 
However, this worst-case scenario is unlikely, occurring only at the initial moment 
when particles are concentrated in specific domains according to the conditions of 
the problem. As the numerical solution evolves, the particles will inevitably be 
transported to different parts of the computational domain, a process that will be 
further accelerated by turbulent mixing. 

The developed interprocessor exchange algorithm ensures the correct transfer 
of particle data between subdomains of computing cores, and guarantees 
the possibility of particle transport throughout the entire ocean model domain. Test 
calculations demonstrate that setting the integration time step to one-fifth of 
the ocean model’s time step achieves relative trajectory smoothness when crossing 
the cell boundaries. 
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